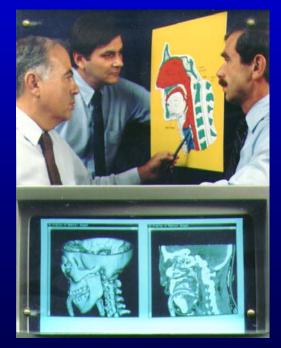
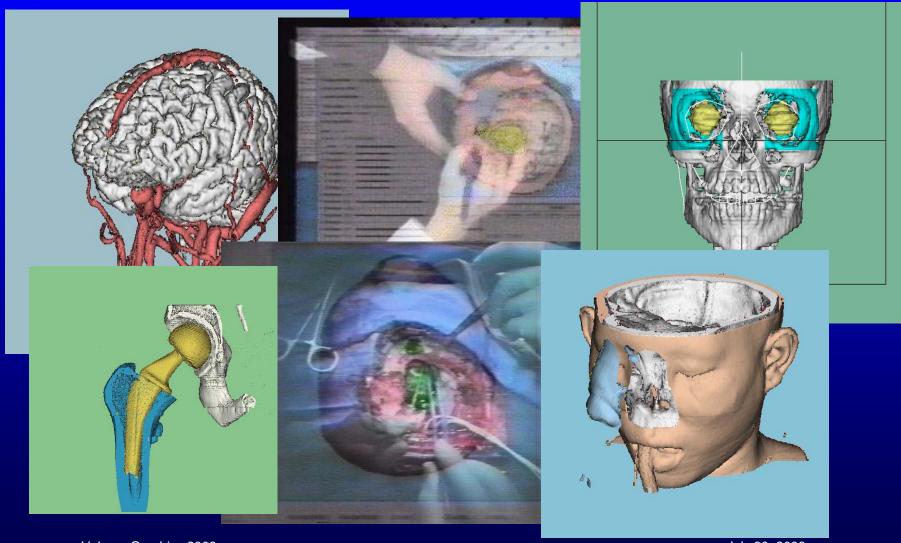
The Future of Sample-based Representations


Bill Lorensen GE Research Iorensen@crd.ge.com

Sample-base Representations

The PastThe Future

The Past


Dividing Cubes Offshoot of Marching Cubes Generates points from volumes

H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford and B.C. Teeter, *Two algorithms for the three-dimensional reconstruction of tomograms*. Medical Physics, 15(3):320-327 (1988).

US4719585: Dividing cubes system and method for the display of surface structures contained within the interior region of a solid body

Dividing Cubes – 1984-1992

Volume Graphics 2006

Hardware Point Rendering - 1987

ISSCC 87 / FRIDAY, FEBRUARY 27, 1987 / RHINELANDER SOUTH / 10:45 A.M.

SESSION XXII: SYSTEMS AND ARCHITECTURES

FAM 22.4: 30MHz Compiled Chip Set for Graphics Computations

Sharbel E. Noujaim, Richard I. Hartley, Harvey E. Cline, Ronald T. Jerdonek, Siegwalt Ludke


General Electric Corporate Research and Development Center

Schenectady, NY

Silicon Compiler

	Interpolator	Normalizer
Technology	1.25 CMOS	1.25 CMOS
Transistor count	15,000	35,000
Chip size	121 x 128mil ²	184 x 206mil ²
Clock speed	36MHz @ 25°C	30MHz @ 25°C
	40MHz @ 0 [°] C	32MHz @ 0°C
	32MHz @ 70°C	28MHz @ 70°C
Power dissipation	150mW @ 30MHz	400mW @ 30MHz
Design time	4 hours	2 days
1/0	TTL compatible	TTL compatible

Rotate Board - 1991

CLINE, H. E., LUDKE, S., LORENSEN, W. E., AND TEETER, B.C. 1990. A 3D medical imaging research workstation. In Volume Visualization Algorithms and Architectures, ACM SIG-GRAPH'90 Course Notes, ACM, NY.


The Future

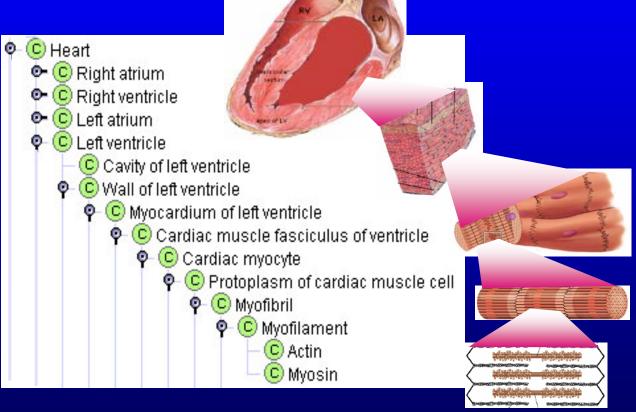
- It's time to moving beyond pictures
- Scalar Volume Visualization is a commodity
- More image analysis and modeling

Computational Medicine

A few tough problems

- Integrating technology into workflow
- Integrating imaging with other information
- Handling massive, distributed datasets
- Detection / quantification
 - Screening
 - Drug trials
- Population studies
- Segmentation/Modeling

Volume Graphics 2006


Beyond Pixels

- Modern radiology scanners produce high resolution volumetric images
- Image analysis techniques segment tissues and organs
- Ontologies relate segmented structures to anatomical knowledge

Ontologies can provide the bridge between pixels and anatomy

Foundational Model of Anatomy

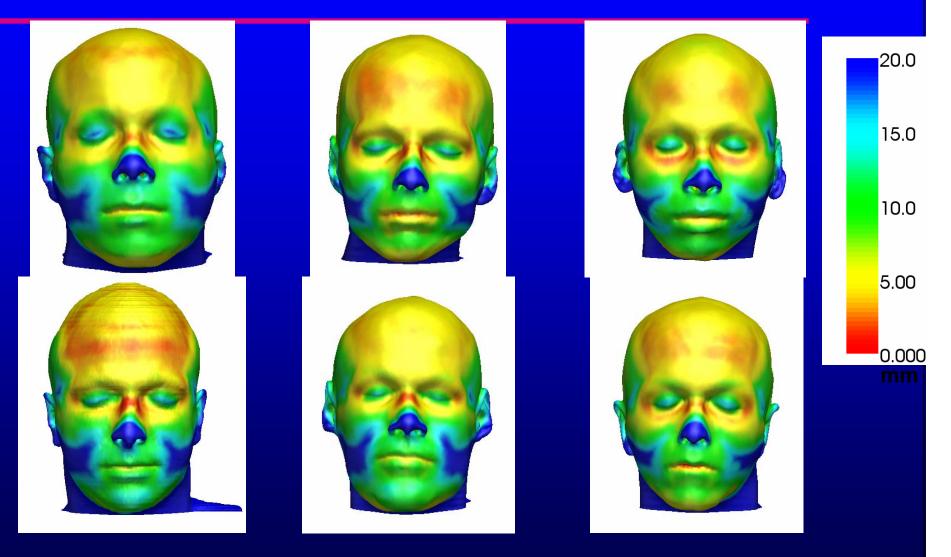
U Wash Foundational Model of Human Anatomy

Atlas Registered to Novel CT Data

/ Slicer 2.2-dev	🖉 Viewer
File View Help Modules	A Axial
Data Volumes Models	
Alignments Editor ModelMaker	
More: Colors	
Help <mark>Display</mark> Props Clip Meter	
Click the right mouse button on the name of a model for options.	
Show All Show None	
Choose a screen: viewRen	
Visibility Opacity	
right_ventricle	
left_ventricle 1.0	
scending_thoracic_ao	P Sagittal S Coronal
	S Sagittal S Coronal
thoracic_spinal_cord 1.0	
body_of_right_atrium	
	A PR L
	FULL FILL
T	
Exit	
	III

Virtual Soldier Project

Implicit Anatomical Modeling



0 mm: right ventricle 10 mm: left ventricle 40 mm: left atrium 81 mm: thoracic esophagus 100 mm: esophageal_submucosa 102 mm: right_lower_lobe_of_lung 103 mm: azygos vein 112 mm: mediastinum 113 mm: unknown 115 mm: intervertebral disc of sixth thoracic 119 mm: sixth thoracic vertebra 147 mm: unknown 168 mm: sixth thoracic vertebra 185 mm: muscle of back 205 mm: unknown 206 mm: rhomboid major muscle 212 mm: unknown 213 mm: trapezius muscle 228 mm: unknown 230 mm: subcutaneous tissue of trunk 235 mm: skin of trunk 241 mm: unknown

volume Graphics 2000

Dense Tissue Depth: Male, European-descent

Subjects from the National forensic Facial Database

July 30, 2006

Dense Tissue Depth

European-descent African-descent Asian-descent 20.0 Male 15.0 10.0 5.00 0.000 Female

Subjects from the National forensic Facial Database

July 30, 2006

Additional Reading

On the Death of Visualization¹

Can It Survive Without Customers? Bill Lorensen

Google: "Death of Visualization

Volume Graphics 2006

The Future of Sample-based Representations

Bill Lorensen GE Research Iorensen@crd.ge.com