
OBJECT-ORIENTED COMPUTER ANIMATION

William E. Lorensen
Boris Yamrom

GE Corporate Research and Development

ABSTRACT

Recent advances in computer graphics hardware offer an
opportunity to extend 3D visualization techniques into a
fourth dimension, time. But, computer animation - the
control and display of models, cameras, and lights in a
simulated world - is a complex process and software that
performs animation should hide this complexity from us-
ers. Furthermore, because computer animation is not ma-
ture, modem animation systems should be designed to
add innovative techniques without discarding investment
in existing software.

Praised by software researchers throughout the decade,
object-oriented technology provides tools to deal with the
complexity and change present in computer animation.
Object-oriented design creates a natural partitioning of
complex systems into manageable pieces called objects.
allowing system architects to reuse existing software and
to extend existing systems.

We used the object-oriented paradigm to design and
create the 3D computer graphics animation system
OSCAR, the Object-oriented Scene AnimatoR. After a re-
view of object-oriented terminology, we describe a design
methodology, system architecture and implementation
strategy for animation systems regardless of the
object-oriented capabilities of the implementation envi-
ronment.
1. INTRODUCTION
Two areas of computer science and computer graphics
receive considerable attention in recent literature. Com-
puter scientists tout the benefits of object-oriented sys-
tems, promising benefits in system design that will sur-
pass those obtained using structured programming. Com-
puter graphics researchers actively pursue realism, pro-
ducing high quality, three-dimensional animation sys-
tems.

The following sections review object-oriented systems
and 3D computer animation; present a design methodol-
ogy that applies an object-oriented philosophy to a 3D

animation system; and describe an implementation in the
language C. A short example illustrates the system.

Object-oriented systems rely heavily on the software engi-
neering concepts of
- Information hiding: Details of a system that do not af-

fect other parts of the system are not visible from the
outside.

- Abstraction: Entities of a system are grouped according
to common properties and operations.

- Modularization: Parts of a system that have localized
behavior are grouped together with well defined inter-
faces.

In object-oriented systems, these three principles comple-
ment rather than compete with each other.
Terminology
Object-oriented terminology combines the everyday terms
objects and inheritance, with unfamiliar ones, such as in-
stances and message passing. Here, we define common
object-oriented concepts as they are used in the paper;
Stefik and Bobrow [l] give more extensive definitions.

Object-oriented systems are characterized by abstract
constructs called objects that contain data and procedures
to manipulate that data. The data describe the local state
of an object and are only accessible to the outside world
through an object’s procedures, called methods. A method
is executed when the object receives a message. Objects
communicate with other objects by sending messages. A
method dictionary maintains the correspondence between
messages and methods.

An instance is created by making a copy of a particular
class of objects. Classes are templates for object creation,
containing not only the data associated with the class, but
also the methods for manipulating the data. These data
are called instance variables.

Through a mechanism called inheritance, new classes
obtain data and methods from other classes, changing or
adding data and methods. Two types of inheritance exist
in object-oriented systems: single and multiple. Using sin-
gle inheritance, a class inherits data and methods from at

2. OBJECT-ORIENTED TECHNOLOGY

588

CH2759-9/89/0000-0588 $1 .OO Q 1989 IEEE

most one other class. On the other hand, multiple inheri-
tance permits a class to inherit from more than one class.

Only the objects know their data structures and meth-
ods. Nothing outside the object can directly access these
structures. If the implementation of an algorithm requires
change in the object's data structure, only the object itself
feels this change.

A variety of systems are available that apply object-
oriented techniques. Smalltalk-80 [2], developed at
Xerox's Palo Alto Research Center (PARC), is a system
and language based solely on the object-oriented para-
digm. Objective-C [3], a product of Stepstone, Inc., com-
bines Smalltalk-style messaging, with the C language.
C++ [4], from AT&T, is a superset of C that supports
classes and inheritance.

Software engineers can apply the principles and proper-
ties of object-oriented systems to software design. This
section describes an object-oriented methodology that is
independent of the implementation.

Grady Booch [5] outlines an object-oriented design
methodology for the Ada"' language that does not ad-
dress inheritance (since Ada does not support it) and im-
plies that object-oriented design can be done by extract-
ing nouns (objects) and verbs (methods) from a require-
ments description.

We take an alternative approach that places more em-
phasis on the abstraction process and also deals with in-
heritance. This methodology is appropriate at the prelimi-
nary design stage, i.e. the architectural stage, of the soft-
ware engineering life cycle. The primary effort is to de-
fine and characterize the abstractions. This approach to
object-oriented design proceeds as follows:
1. Identify the data abstractions for each subsystem.

3. OBJECT-ORIENTED DESIGN

Data abstractions are the classes of the system. Work-
ing from the requirements document, the abstraction
process starts top-down where possible, although many
times the requirements explicitly mention abstractions.
Often the classes correspond to physical objects within
the system being modeled. This is, by far, the most
difficult step in the design process and the selection of
these abstractions influences the entire system architec-
ture.

The attributes become the instance variables for each
instance of the class. Many times, for classes that cor-
respond to physical objects, the instance variables are
obvious. Other instance variables may be required to
respond to requests from other objects in the system.

2. Identifi the attributes for each abstraction.

Ada is a trademark of the Department of Defense

Identify the operations for each abstraction.
The operations are the methods (or procedures) for
each class. While some methods access and update in-
stance variables, others execute operations singular to
the class. If the new abstraction inherits from another
class, inspect that class's methods to see if any need to
be overridden by the new class.
Identify the communication between objects.
Define the messages that objects can send to each
other and suggest a correspondence between the meth-
ods and the messages that invoke them. Even if an
object-oriented implementation is not planned, mes-
sages help the design team communicate and can be
used in the next step, writing scenarios.
Test the design with scenarios.
Scenarios, consisting of messages to objects, test the
design's ability to match the system's requirements.
Write a scenario to satisfy each user level function in
the requirements specif iqon.
Apply inheritance where appropriate.
If the data abstraction process in step 1 proceeds top-
down, introduce inheritance there. However, if abstrac-
tions are created bottom-up (often because the require-
ments directly name the abstractions), apply inheri-
tance here, before going to another level of abstraction.
The goal is to reuse as much of the data and methods
that have already been designed. At this point, com-
mon data and operations often surface and these com-
mon instance variables and methods can be combined
into a new class. This new class may or may not have
meaning as an object by itself. If its sole purpose is to
collect common instance variables and methods, it is
called an abstract class.
The designer repeats these steps at each level of ab-

straction. Through successive refinements of the design,
the designer's view of the system changes depending on
the needs of the moment. Each level of abstraction is im-
plemented at a lower level until a point is reached where
the abstraction corresponds to a primitive element in the
design. New levels of abstraction should provide some at-
tribute or operation that cannot be expressed at the previ-
ous lowest level. For example, the abstraction of geomet-
ric primitives starts with a polygon, defines a rectangle at
the next level of abstraction, and follows with a square.
4. COMPUTER ANIMATION SYSTEMS
Computer graphics representations have progressed from
the early use of lines to produce wire frame images of
three dimensional models, through simple shaded presen-
tations, up to the current state-of-the-art realistic images.
This is the result of success in defining more accurately
the models' environment. Transparency, translucency,

589

shadows, illumination models, and surface properties are
a few areas where research continues to provide algo-
rithms that produce more acceptable synthetic images.
The current trend in computer graphics is to apply these
advanced techniques to produce quality animations.
Related Work
Although dozens of films produced using 3D computer
graphics have appeared over the years, the literature con-
centrates on the algorithms that produce the images, not
on the animation systems themselves. This is probably
because few general purpose animation systems exist.
Many computer-generated films are produced by execut-
ing a sequence of unrelated programs through the control
of command files. The major efforts seem to have been in
the areas of' image quality and realism, not on the anima-
tion interfaces themselves.

ASAS [CI], the Actor/Scriptor Animation System, was
used at Information International Inc., Ill, to produce se-
quences for the Disney movie TRON [7]. ASAS, imple-
mented in Lisp, relies heavily on object-oriented con-
cepts. ASAS actors are the participants in the animation,
communicating by sending and receiving messages. Cues
define actor behavior and their processing resides within
the actors themselves.

MIRANIIbl [8] also extends a computer language, here
Pascal. Abstract graphical types describe the participants
in the animation. A sequence of scenes comprise an ani-
mation, where each scene is a sequence of statements ma-
nipulating actors, cameras, and lights.

Clockworks 191, developed at Rensselaer Polytechnic
Institute, is a C-based object-oriented animation system
that integrates modeling, animation control, and render-
ing. Both Clockworks and OSCAR use an animation script
to control the animation process. The systems were devel-
oped in parallel and OSCAR benefits from the interactions
with the R.P.I. staff. The major differences lie in OSCAR'S
ability to interface with external programs that often exist
in an industrial setting.

Several commercial animation systems are available.
Wavefront 'Technologies (Santa Barbara, CA) offers mod-
eling, animation and rendering products that run on high
performance graphics workstations. Videoworks E, (Mac-
roMind, San Francisco, CA) is a two dimensional anima-
tion system that runs on Apple Macintosh desktop sys-
tems.
5. OSCAR
Industrial computer graphics applications share some
characteristics with those of the university and commer-
cial film communities. Although software for modeling
and rendering is common to both environments, univer-

sity and commercial systems depend on artistic talent to
communicate a message through the animation. In con-
trast, the industrial environment is driven by analyses of
modeled phenomenon. For example, an artist interpreting
robot motion in a work environment may show the robot
execute apparently realistic motions, whereas an indus-
trial robot motion must .be predicted by sophisticated
kinematic analysis. After all, the intent of such an anima-
tion is not to produce a pretty film but to gain insight into
the interactions of the robot with its work environment.
Also, if the animation is used as a marketing tool, pro-
spective customers will not be impressed by an artist's
interpretation of the robot behavior, but want to under-
stand how the commercial robot operates in a real envi-
ronment.

This is the key difference between this system and
those described previously: this system relies on analysis
rather than art. This raises an issue for industrial applica-
tions: the analysis software often already exists with its
own user interface and data bases.

OSCAR, the Object-oriented Scene AnimatoR, provides
an automated graphics animation capability to create,
control, and manage 3-D computer-generated animation
sequences. OSCAR automates the creation of high-quality
film and video, showing the results of complex research,
experiments, and other computer-generated analyses. Us-
ing an object-oriented script language as the user inter-
face, the animation system provides automatic control of
analysis, modeling, rendering, display, and filming proc-
esses. Interfaces have been developed for scientific analy-
sis programs in the areas of molecular modeling, mecha-
nisms analysis and robotics, with future interfaces
planned for structural analysis and fluid dynamics. The
object-oriented design produced a system that lends itself
to interfacing with existing and future in-house and exter-
nal software.
5.1. The Animation Process
A prerequisite to developing any software system, is un-
derstanding the problem to be solved. As in all disci-
plines, computer animation has its own terminology. Here
we present the animation process, defining enough jargon
for the reader to understand the subsequent system de-
sign.

The user of a computer animation system acts as the
producer, writer and director of a film sequence. The pro-
ducer manages the overall film production, keeping
schedules, assigning tasks, and organizing resources. The
writer creates a script based on the requirements of the
customer. The director controls the animation, positioning

590

the props, actors, cameras, and lights. Several steps are
required to produce an animation.

A review of the process illustrates the steps that can
benefit from the computer animation system.
1. The Story. The writer, working with a customer, deliv-

ers a story that describes the role of each participant
including their appearance, dialog, and actions. Every
film is made with some purpose in mind. It could be to
verify or understand some mathematical algorithm as it
relates to a physical phenomenon, to explain an ab-
stract concept to an audience, to market a product, or
to provide entertainment. Writing is an artistic process
that is difficult to assist with the computer.

2. The Script. The script contains the details of position-
ing and movement of the actors, cameras and lights in
the animation. OSCAR provides a language for script-
ing to document changes and to produce the final ani-
mation. The script can be written with a text editor, or
created with the OSCAR Interactive Script Generator.
OSCAR scripts contain statements in an object-oriented
language developed as part of the system.

3. Simulations. For scientific applications, experiments
and simulations often provide the physics of the anima-
tion. Technical analysts setup and execute these simu-
lations. For computer animations, these analysts are
the scientists and engineers requesting the animation.
OSCAR assumes that most animations depend on some
computer model. Analysis runs must be made to pro-
vide the simulation results for the animation. OSCAR
calls these simulation programs analysts.

4. Models. Each prop and actor in an animation must
have a geometric model. During the animation, the di-
rector moves the models around the environment.
Some analyses have geometric models associated with
them, while others do not. For instance, a structural
engineer, doing a stress analysis of a turbine, models
the turbine with finite elements before the analysis is
run. Here, the model and analysis are tightly coupled:
both analysis and display require the same model.
However, in a molecular mechanics calculation, simple
Cartesian points model the atoms, and connectivity re-
lationships model the bonds. Here, the rendering proc-
ess requires more sophisticated geometric models:
spheres and cylinders. Models are created by programs
called modelers.

5 . Rendering. This step applies computer graphics algo-
rithms to the computer geometric model, surface prop-
erties, lighting, etc. and produces shaded images for
display. Rendering is done by programs called ren-
derers.

6. Film Editing. Editors do post-production, creating ti-
tles, credits, and special effects such as dissolves and
fades that add a professional touch to the completed
sequence.

7. Recording. Recorders select frames for the final se-
quence and expose film or video tape.

5.2. Major Subsystems
The subsystem breakdown in OSCAR delegates authority
for the steps in the animation process. Using an anthropo-
morphic flavor throughout the descriptions maintains the
correspondence with conventional movie making meta-
phor. Figure l shows a diagram of the system.

Interactions between objects and programs are de-
scribed below:
1. Director is a collection of objects that provide control

over all the components of OSCAR. The Director reads
and interprets a script, sending commands to the other
modules to do the animation.

2 . Interactive Script Generator provides a graphic user in-
terface for writing scripts. Scripts contain the instruc-
tions describing what is to occur in the animation se-
quence. The Interactive Script Generator allows the user
to position cameras, lights, and to describe the move-
ment of objects while seeing a wire-frame image of the
objects that will be presented in the final film as realis-
tic images. User inputs are interpreted and stored in a
script file. Although the Interactive Script Generator pro-
vides a user interface for both- the novice and experl-
enced user, the experienced user can achieve more
control by writing or editing the scripts with a text edi-
tor.

3.'The Frame clerk keeps track of the location of each
finished frame of the film, notes whether it has been
recorded, and archives frames when they are no longer
needed. Frames can be kept in several places: online
disk, magnetic tape, and optical video disk.

4. Liaisons are interfaces between OSCAR and external
modules. The Liaisons translate OSCAR-specific infor-
mation into a form their assigned modules (analysts,
modelers, or renderers) can understand and vice-
versa.

5 . Analysts are external programs that do analyses in a
variety of scientific fields. The interfaces to these soft-
ware packages cannot be changed, so an analysis-spe-
cific liaison is the interface between each analyst and
OSCAR.

6. Modelers are external programs that create the geome-
try of the objects for the animation. Typically, they use
geometric primitives to build complex representations
of structures. Modelers available for use include
GEOMOD, Movie.BYU, Phigs+ [lo], and Synthavison.

591

Movie BYU
Mechanisms analysis Synthavislon

Movle. BYU Ray Tracer
Synthavlsion

Figure 1. System Overview

Molecular MocW4ng Geomod wigs

Phigs

Like the analysts, these systems also have defined inter-
faces, and each needs a liaison to translate between the
director and the modeler.

7 . Renderers are external programs and objects that take
geometric information and environmental information
(such as lighting and camera positions) from the script
and create frames for later display and filming. These
renderers include Movie.BYU, Phigs+, and Synthavison.
There is a liaison object for each external renderer.

8 . Frame editor objects do editing, and provide special ef-
fects and titles. These objects operate on frames.

9. Recorder objects do the filming of the sequences. Steps
include obtaining finished movie frames from the frame
clerk, displaying the images in a frame buffer, and re-
cording the images on film or video disk.

5.3. Animation Language
Our animation language uses one statement structure that
defines communication between objects. In an animation
script, the user specifies an object and the messages for
that object. In the excerpts from the syntax description of
the language that follow, capitalized items and characters
within double quotes are terminal symbols:

statement:= object messages '' ; "
object := NAME
messages:= message I messages message
message:= PREFIX "7" I PREFIX " I"

I PREFIX " : " argument I PREFIX "=" argument
I PREFIX "@" argument I PREFIX "+" argument
I PREFIX "-" argument 1 PREFIX " I " argument
I PREFIX "'" argument 1 PREFIX " ^ " argument

argument:= VALUE I NAME I STRING
I " (" argumentlist ") "
I " [" object messages " 1 "

argument-list := argument I argument-list ", " argument
where, VALVE is a floating point number, NAME is a
string of characters, STRING is a quoted string, and PRE-
FIX is an optional string. Special characters at the start of
a line allow the user redirect input and output, invoke
system routines, and print text at the terminal. The left
and right square brackets allow the arguments to a mes-
sage to be obtained from another object. The semantics of
messages are implemented within the objects themselves.
The following rules for message suffixes illustrate mes-
sage semantics:
? requests for the value of an instance variable.
= sets an instance variable.
: requires arguments, but does not specifically set an in-

stance variable.
@ defines an index.
+, -, /, *, and
! ends messages with no arguments.

Messages to the same object can be concatenated on a
statement. A typical statement is:

position= (0,5,0) rotate-x: 30
color=(l,O.l) onl;

terminate arithmetic operation messages.

ACTOR new: Abox

This statement creates an instance of the class ACTOR
with a position and color. The object is rotated about its
local x axis. An alternate statement, that improves read-
ability, provides the same results as above:

592

Abox := ACTOR [
position= (0.5,O) rotate-x: 30
color=(l ,O,l) on1

1:
To make another box with the same instance variable Val-
ues as the first,

Abox new: AnotherBox;

A camera can be defined,
CAMERA new: Acamera position= (0, 20, 5) view-angle= 30:

and its view reference point can be set to the position of
the box by sending a message to the box requesting its
position,

6 . OSCARCLASSES
Currently over one hundred classes exist in the system.
These classes were selected using the design process de-
scribed in Section 3. A few of the classes are summarized
here:
Actors are the geometric objects of the animation. They

have position, origin, orientation, color, and visibility.
Their visibility is controlled with on! and ofit messages.
They have an associated model that is kept in a sepa-
rate modeler object. By separating the actor’s state and
model, we can preview an animation with simple mod-
els, later substituting more sophisticated models for
slower, but higher quality animations.

Scenes contain cues and renderers. In addition, scenes
have durations (in seconds), resolution (in frames per
second), and lists of actions to execute when they start,
while they are active, and when they complete. An ac-
tion is any valid script statement. A scene executes ac-
tions by sending parse: messages to the parser with the
actions as arguments. Once a scene receives a start!
message, it executes any start actions, and sends tick!
messages to each of its cues. After the cues complete,
the scene sends a render! message to each of its ren-
derers. On a scene runs for its duration, it executes its
end actions and sends a complete! message to each ren-
derer.

Cues contain temporal information that controls the pres-
ence and behavior of a scene’s participants. A start and
end time define the interval that a cue is active. Cues
have clocks that advance at a cue-specific resolution.
When a tick! message is received from another object
(typically a scene), the cue advances its clock and tests
if it should become active. If so, it executes each of its
start and tick actions and advances its clock. As long as
a cue’s clock remains within the interval, the cue exe-
cutes tick actions when it receives tick! messages. Once
the interval is exceeded, the cue executes its end ac-
tions.

Acamera focal-point= [Abox position?] :

Cameras are the means by which the animation is
viewed. In our implementation, the Foley and Van
Dam [ll] viewing transformation pipeline is used.
Cameras can be moved, rotated, and turned on and
off. They have fields of view, up directions, and clip-
ping planes. Cameras have no geometric representation
so that if one is within the view of another, it is not
visible in the animation. Although multiple cameras
can be present in a scene, only one camera can be
active at one time for a given renderer.

Lights illuminate the scene. They have position, color,
and orientation. Lights can be moved and turned on
and off. Multiple lights can be active at one time.

Renderers access cameras, lights, and the geometry and
state of each actor to create raster or vector images.
When a renderer receives a render! message, it re-
quests position and orientation information from its as-
signed actors, lights, and cameras. Renderers that exist
as objects in the system, produce images interactively.
For external renderers, a renderer liaison creates a
command file that can be run later to do the rendering.
An abstract renderer exists that specifies the protocol
for all renderers. To add a new renderer, the user must
satisfy this protocol.

Editors are objects that contain cues and recorders. They
are similar to scenes in that they send tick! messages to
each of their cues and record! messages to each of their
recorders. Editors manipulate the raster images created
by renderers.

Recorders compose frames from multiple movie frames.
Each recorder has a list of sequences of movie frames
that it can display and record.

Other classes available within the system include matrix
transformations, splines, scalars, vectors, key frames, and
collections.
7. IMPLEMENTATION
The system, written in C, runs on Digital Equipment Cor-
poration VAXs running VMS,@ Sun Microsystems work-
stations running Unix,@ and a Stellar GSlOOO graphics
computer (Newton, MA). The parser, produced using
YACC [12] and LEX [13], is an object that other objects
can send parse: messages to. Each class is a C module. C
struct’s define the instance variables, but the structures
themselves are static so that they are not visible outside
the module. A standard header, required for each class,
includes the object name, super class, debug information,
and other general instance variables.

VMS is a trademark of Digital Equipment Corporation
Unix is a trademark of Bell Laboratories

593

Every method is a C procedure and each class has a
method dictionary that contains the name of each mes-
sage and the appropriate procedure to invoke. Single in-
heritance of both instance variables and methods has
been implemented. The message handling is done through
a message object that receives an instance name or pointer,
message, and argument list. On receipt of a message, the
message object searches the instance’s method dictionary.
If it finds a match, it invokes the appropriate procedure. If
not, it searches the method dictionary of the object’s super
class. This continues until the highest object in the object
hierarchy is reached, when the message object reports an
error to the user. An argument package, by keeping an
argument stack, allows methods to have variable numbers
of arguments. Objects return and receive arguments
through this mechanism.

The system now consists of over 120,000 lines of C
code. C macros generate the code for data structures and
methods that query or update instance variables. A class
generator object automatically generates C code from a
script describing an object’s instance variables and meth-
ods.
8. A SAMPLE ANIMATION
A short animation illustrates the capabilities of the sys-
tem.
8.1. The Analysis System
The analysis package is an in-house system capable of
predicting articulated robot motion given starting and end-
ing positions of a robot hand. The user of this system
interactively prescribes key positions of the robot hand,
and using kinematic techniques, the robot program pro-
duces a graphic display of the motion of the robot. The
program creates a file containing transformations for each
joint and member as it progresses through the simulation.
The analysis does not require elaborate geometric models,
using prisms to model members and cylinders to model
joints. However, for animation purposes, more realistic
representations are used. Here, the robot has been mod-
eled using GEOMOD [14], a commercial modeling pack-
age from SDRC. The transformations produced by the
simulation are applied to the vertices of the polygons pro-
duced by GEOMOD. Liaisons for the robot simulation
and GEOMOD provide the interfaces between each exter-
nal program and the animation system. A PHIGS+ ren-
derer produces the images on a Stellar computer.
8.2. Script Generators
A robot has many components, but, rather than burden
the user with creating actors for each component, a RO-
BOT generator object scans user specified transformation
and modeling, files and generates a script that defines an

actor for each joint. It also generates cues for key work
points in the analysis. The ROBOT generator sends the
script to the parser object and stores the script in a text
file that can be edited later. The notion of generators re-
duces a user’s effort in starting a script while still main-
taining the flexibility offered by the language.
8.3. The Script
The scene has three cues. Pan moves the camera along a
path defined by a spline. Simulate sends a tick! to the RO-
BOT liaison object. When the ROBOT liaison object re-
ceives the tick!, it interpolates the transformations for
each joint of the robot and sends position+ and orientation+
messages to each joint’s actor. The cue labeled both, com-
bines the pan and simulate cues, setting the start time for
the simulate cue to be 1 second, i.e. the robot movement
will start 1 second after the camera pan begins.
-- First describe the scene
SCENE new: scene-1

cues = (pan, simulate, both)
renderers = aPhigs

-- Next define the participants.
-- For brevity, we omit repetitive statements
ROBOT new: Qe-rObOt

time=0
transfile= trans2.dat
joint-1 =(robot-part-l-l)
-- joints 2 - 9 skipped for brevity
joint-1 O= (robot-part-1 0-1) :

members=(robot-part-1-1 ,
-- robot parts 2 - 9 skipped for brevity
robot-part-1 0-1) :

COLLECTION new: robotparts

-- Each joint in the robot is an actor
ACTOR new: robot-part-1-1

modeler=modeI-l-l:
-- robot part instances 2 - 10 skipped for brevity
-- Each actor has a modeler
GEOMOD new: model-1-1

universal=trans3. uni
object=transl :

-- model instances 2 - 10 skipped for brevity
-- Define cameras and lights
CAMERA new: camera-1

position= (228, 34.2, 90.0)
view-up=(O.O, 1)
focal-point= (28 .O. 34.2, 36 .O)
view_angle=45
cIipping_range=(5. ,700.)
onl;

position= (camera-1 position?] on1 ;

actors= robotparts
cameras= camera-1
lights= light-1 :

LIGHT new: light-1

PHlGS new: aPhigs

-- path circle, below, is a spline left out for brevity

594

CUE new: pan
duration=[ge-robot duration?]
start-actions=

tick-actions =

CUE new: simulate

(”path-circle time = O;”, ”ge-robot time= 0.;)

“camera-1 position= ([path-circle tick!]);”;

duration= [ge-robot duration?]
start-action= ”ge-robot time= 0.; ”
tick-action=”ge-robot tick1 ; ” ;

duration= [ge-robot duration?] duration+ 1
start-actions=”

CUE new: both

ge-robot time= 0.;
pan time=O start-0; simulate time=O start=l :

9. .
-- Give start times for each cue
pan start = 0; simulate start = [pan end?];
both start = [simulate end?];
-- Now run the animation
scene-1 startl;

The animation script creates instances of classes (defined
in C modules) and specifies values for their instance vari-
ables. The objects interact with each other by sending mes-
sages. The animation process begins with the message
start! to scene-1. This message causes scene-1 to advance
its own clock, send tick! messages to each of its cues,
followed by render! messages to each of its renderers. The
cues manipulate actors, cameras, and lights by sending
messages to them. The renderers, on receipt of a render!
message, ask their associated actors, cameras, and lights
for current settings, and produce appropriate movie
frames.
9. SUMMARY
OSCAR made its first film in December 1984 when it con-
sisted of twenty five classes including actors, cameras,
lights, scenes, cues and renderers. Since its initial imple-
mentation, OSCAR has grown to contain over ninety
classes, fifty eight of which are subclasses of the original
classes, i.e. over half of the classes share code with other
classes.

During this project we have made several observations:
- Applying the data abstraction process to animation pro-

duces a natural user interface with familiar terminol-
ogy.

- The abstraction step of the design is critical and re-
quires the most effort..

- The object-oriented approach partitions a complex sys-
tem into manageable pieces. No single object is com-
plex, but the system as a whole can deal with the com-
plexity of the modeled process.

- The system is less fragile than others we have written.
We make changes and additions proceed without fear of
breaking the system.

10. ACKNOWLEDGMENTS
Object-oriented design methodology and computer graph-
ics application development is a team effort in our labora-
tory. Other team members include: Michelle Barry (now
with Star Technologies) and Dan McLachlan (now with
Ardent Computer). The Animation Project at the
Rensselaer Polytechnic Institute Center for Interactive
Computer Graphics contributed to the ideas described in
this system. Jon Davis of GE provided interfaces to the
robot simulation system.
11. REFERENCES

Stefik, M. and Bobrow, D., “Object-Oriented Pro-
gramming: Themes and Variations,” AI Magazine,
vol 6, no 4, pp. 40-62, 1986.
Goldberg, A. and D. Robson, Smalltalk-80, The Lan-
guage and Its Implementation, Addison-Wesley,
1983.
Cox, B., Object-Oriented Programming, An Evolution-
ary Approach, Addison-Wesley, 1986.
Stroustrup, B., The C++ Programming Language, Ad-
dison-Wesley, 1986.
Booch, G., Software Engineering with Ada, Benjamin
Cummings Publishing, 1983.
Reynolds, C., “Computer Animation with Scripts
and Actors,” Computer Graphics, vol. 16, no. 3, July

“Disney Takes the Lead with TRON,” Computer
Graphics World, vol. 5 , no. 4, April 1982, pp. 41-45.
Magnenat-Thalmann, N. and D. Thalmann, Com-
puter Animation: Theory and Practice, Springer Ver-
lag, 1985.
Breen, D., Apodaca, A. and P. Ghetto, “The Clock-
works,” TR-86016, Rensselaer Polytechnic Institute
Center for Interactive Computer Graphics, 1986.

.

1982, pp. 289-296.

[101 “PHIGS+ Functional Description,” Computer
Graphics, vol. 22, no. 3, July 1988.

[l l] J. Foley and A. Van Dam, Fundamentals of Interuc-
tive Computer Graphics, Addison-Wesley, 1982.

[12] S. Johnson, YACC: Yet Another Compiler Compiler,
Comp. Sci. Tech. Rep. No. 32, Bell Laboratories,
Murray Hill, New Jersey, 1975.

[13] M. Lesk, LEX - A Lexical Analyzer Generator, Comp.
Sci. Tech. Rep. No. 39, Bell Laboratories, Murray
Hill, New Jersey, 1975.

[141 GEOMOD Reference Manual, Structural Dynamics
Research Corporation, 1983.

595

