14 Years of Object-Oriented
Visualization

Bill Lorensen
General Electric
Corporate Research and Development
lorensen@crd.ge.com

Object-Oriented Visualization

Outline

Beginnings

Object-Oriented Visualization
Motivation

Systems versus Toolkits

Outline

A System: LYMB
A Toolkit: VTK

Lessons Learned
1998 and Beyond

Computing in 1984

Vax 11/780

= 1 mip

= t{ime shared

= alphanumeric terminals

Graphics Hardware in 1984

Tektronix Storage Tubes
Plotters

Framebuffers

= Lexidata 3400 (640x512x12)

= Raster Technologies (640x512x24)
Hardcopy

= 16 mm Cameras

Graphics Software in 1984

Tektronix Plot10
= Chart/Line drawing

Evans and Sutherland
= Proprietary, Vector refresh

Movie.BYU
= Shaded, batch mode

No such animal as a graphics API!

Software Methods in 1984

Peak of structured programming
Beginnings of OO

= Simula 67

= Smalltalk

= | isp Machine

= Objective-C

Few college courses and texts

Robot Simulation 1984

Marching Cubes 1984

<
. _._}:' | & \I\‘.

sk s N £)0
£ |

GERT - GE Ray Tracer 1985

Siggraph ‘87

Baseball Visualization 1989
T#I;';'-;:- ;3-"'*3!1:‘ tt‘iﬂ'.;hl‘; ‘}T‘

O o el A .
2 5 2 o R B
e . ALY s o ol

T

'-:'l.,_li"'-'

Stream Polygons - 1991

Triangle Decimation - 1992

IEEE CG&A 1992

Golf Green Visualization

William E. Lorensen and Boris Yamrom
General Electric Company

Swept Surfaces 1993

Removal

Virtual Endoscopy 1994

Virtual Endoscopy Software Application — YESA 1997

XYZ: 19 222
Window
Level
Slice #
Ej Viewer Size: | Min Max

2D Viewer ...

Path Length : 295.204 <mm>

Camera Controller

View Angle 6%

Path Controller

Path Index

334
Rear View | i \

vtk1.0 1995 vtk2.0 1997

e

%tuni%

Wod-0g

\759 2nd Edition

SURLIZATION T00LAT Tion TootkiT

An Object-Oriented Approach to 3D Graphics

An Object-Oriented Approach to 3D Graphics

Portable 3D -

Graphics and ﬁ ‘R'E;d-l.‘f ar:rj :;T
Visualizatic i1 3D—m 1
WI;: (“fa+ ::‘rﬂ — . a scientifie, or
Tcl/"['l; — fiancial
- v
Build Your Own I Bmli[lt:::ll:r T
Applications applications
Wll):l: (Ej:t::* ‘ with C++, Tcl,
Tc]/’rkd o |z
(. -
y Tl les j
Covers Dozens k :
of Graphics and l.lh” SEhFﬂEdEF powertol vik 2.0 u"” Eﬂhrﬂﬂdﬂr
Visualization ; i Winf s/ NT
Techniques HE” mﬂl'tlﬂ amd LINIX HE" mﬂmﬂ
Bill Lorgnsen) .

Bpecial Cantribubore:
Liza Sobier Apkl vk Fick &, G Chanes Las

Visualization

The transformation of data into images

Visualization
ot~

Object-Oriented Visualization

Goals

= Reusability

= Portability
»Operating System
»Graphics API
»User interface

Object-Oriented Visualization

Goals
= | ongevity
= Simplicity

Motivation

Visualization is still evolving
New techniques introduced yearly
Multiple algorithms often used

Anatomy of a Visualization

Read data

hreshold point

A

\;

= _Apply glyphs

\;

Glyphs and Isosurfaces

Slicing

Alpha-blended
planes

Volume Rendering using
Alpha Planes

" Alpha-blended
planes

Isosurface

Data Probing

Computational Grid

Resampled grid

Texture Mapping

High Quality Software Rendering

Volume Rendering

Why Object-Oriented?

Visualization is a complex task
= OO can deal with complexity

Easy to map application domain to
implementation domain

= great fit with graphics
OO promotes modular systems

Why Object-Oriented?

OO Technology is mature

OO Technology is being taught in
college

= There are several texts available
OO Technology is accepted by industry

Systems versus Toolkits

Systems

= Self-contained

= Often turn-key

= Great reuse

= |ntegrated user interface
= All or nothing

Systems versus Toolkits

Toolkits

= More than a library

= |[ncludes an architecture

= Use only what you need

= |ndependent of user interface

Systems

Examples
ANVAS

= |ris Explorer
= Data Explorer

UK_fFtp_site 3 O = UsA_fip_site 4

User_Group 3 [= FAQ OO

1on {} D = Announcemeint i

Toolkits

* Examples
= The Visualization Toolkit

= |nventor
m |SG’s IAP

LYMB

An object-oriented system
= | orensen, Yamrom, McLachlan, Barry

= A methodology for implementing OO
concepts in C

= An interpreter for implementing
object interaction

= Object interaction via run-time
message passing

LYMB'’s History

Started in 1984 as an animation system

= OSCAR - Object-oriented SCene
AnimatoR

Initial system had 25 classes for animation

and rendering

Current system has over 600 classes

After a short time, we realized that we had
much more than an animation system

LYMB Applications

Decimation

= triangle reduction

Visage

= scientific visualization

Golf

= golf green and putting visualization
Product Vision

= design for maintainability
Dozens of small custom interfaces

OSCAR Classes

System core

= message passing, argument handling
= parser

= collection, scalars, vectors
Rendering classes

= actors, cameras, lights

= renderers

Animation classes

= scenes, cues

= keyframes

LYMB Classes

Visualization
= marching cubes
= decimation
= stream polygons

User Interface
= Xlib
= Motif

LYMB Architecture

script

/\

Efficient (object implemented in C)
Rapid application development (interpreter)

Objects and users interact via uniform

message passing protocol

Portable
= C, Unix, X, Motif, Graphics Standards

user

Graphics Example (simple)

ply _modeller new: bunnyModel
filename="bunny.ply’;

actor new: bunny
modeller=bunnyModel;

renderer new: aren
actors=bunny;

aren render!;

Graphics Example (interaction)

<motif_renderer.meta

obj_modeller new: beet obj
filename="beethoven.oby’;

actor new: beethoven modeller=beet obj
property=brass,;

property new: brass diffuse_color=(.2,.8,.4)
specular=.4 specular _power=30;

motif _renderer new: aren actors=[actor instances?]
render!;

motif start!:

1992 LYMB Recognition

In Recognition of User Achievement
Computerworld’s Object Application Award

Presented to GE Corporate Research and Development in recognition of outstanding
custom application development using object technology in the category of

“Best implementation of a reusable development environment for company deployment”.

Bill Laberis Christopher M. Stone
Editor-in-Chief, Compulertworld Chairman, President & CEQ, Object Management Group

COMPUTERWORLD OIAIG

The Newspaper of 1S

LYMB: The Good

Simple Concepts
Started Small

High reuse rate
Portable (Unix only)
Easy to use

High acceptance
Uniform methodology

LYMB: and The Bad

Complex concepts
Creeping features

Weak
documentation

Big learning curve
All or nothing
Proprietary

The Visualization Toolkit

Started as an example implementation
for a text book

Implemented in C++
= runs on Unix workstations and PC’s

Many concepts from LYMB
= similar graphics abstractions
= visualization pipeline

= more flexible data model

No interpreter (initially)

The Visualization Toolkit 2.0

vtk1.0 Plus

2nd Edition

H"ﬂﬂ Iﬂﬂ“.l = \olume Rende.ring

= |[mage Processing

An Object-Oriented Approach to 3D Graphics

w

Render any dara
i 3D—medical,
scienific, or
finzan il

Includes CD-ROM

= Unix/PC Source code
W = Documentation
i — = PC executable
Hen Martin - Examples

and UNIX
Bill Lorensen

w

Builed your ow n
applications
with C++ Tel,

o v

Gpacial Contribubars:
Lisa Sobieragskl Avita Rick &dla, G Chares Law

The Visualization Toolkit

Interpreters added through automatically
generated wrappers

= {cl

= java, java beans

= python...

All documentation contained within code

= makes for easy man page, html, etc....
generation

Source code available via Internet

Compiled versus Interpreted

Compiler Development Cycle

L* Slower development

Faster execution

Run

Compiled versus Interpreted

Interpreter Development Cycle

A *

Faster development
Slower execution

VTK - C++ Example

vtkRenderer *aren = vtkRenderer::New();

vtkRenderWindow *renWIn = vtkRenderWindow::New();
renWin->AddRenderer(aren);

vtkRenderWindowlnteractor iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);

vtkSTLReader stl = vikSTLReader::New();
stl->SetFileName (“cad.stl”);

vtkPolyDataNormals normals = vtkPolyDataNormals::New();
normals->Setinput (stl.GetOutput ());
normals->SetFeatureAngle (30);

vtkPolyDataMapper mapper = vtkPolyDataMapper::New();
mapper->Setinput (normals.GetOutput ());

vtkActor actor1 = vtkActor::New(0;
actor1->SetMapper (mapper);
actor1->GetProperty () ->SetColor (.8, 1, .9);
aren->AddActors(&actor1);

renWin->Render ();

iren->Start ();

VTK - Tcl Example

vtkRenderer aren
vtkRenderWindow renWin

renWin AddRenderer aren
vtkRenderWindowlnteractor iren

iren SetRenderWindow renWin
vtkSTLReader stl

stl SetFileName “cad.stl”
vtkPolyDataNormals normals

normals Setlnput [stl.GetOutput]

normals SetFeatureAngle 30
vtkPolyDataMapper mapper

mapper Setlnput [normals GetOutput]
vtkActor actor1

actor1 SetMapper mapper

[actor1 GetProperty] SetColor .8 1.9
aren AddActors actor1
renWin Render
iren Start

A System Application: LYMB

47

Jox

}L-: *
I lymb objects
motif lib

A Toolkit Application: VTK

a tcl mterpreter
\/ \
T)-— —
< /7 —
/ vtk library

/7
__—— (C++ applicatio
\A
a C++ class
libraries

. essons Learned

Object-oriented is good
= if you enforce a methodology

Interpreters are good
= but don’t invent your own

Abstractions are good

= they protect against future changes
beyond your control

. essons Learned

C++ is mature

Isolate the user interface
Keep it simple!

Watch those features!
Proprietary is bad!!!

Visualization Today

The Visualization Community is no
longer in control

= Technology drivers have changed
= Customers expectations are high

but...we do have lots of software
experience

= OO is a proven technology
= \We have a large installed base
= \We know our application domain

External Forces

Internet
Wintel

Standards
Language Wars

Internet

The right information, to the right
person, at the right time...
In the future,

= Most applications will be Internet-ready
= Finance market will solve security problem

But,

» Performance remains an issue

Wintel

Microsoft OS’s and API's dominate
Intel processors dominate

Scientific Visualization is a small player
compared to

= Entertainment

= \WWord Processing

What can we leverage???

Standards

OpenGL

= Available on Unix and PC’s

= Cheap accelerator boards

= |[mpacts graphics and volume rendering

Java
= \Write once, run anywhere (??7?)
= Performance

Language Wars

Java Wars
= Sun vs Microsoft

Java vs C++
= Portability vs Performance

Java3D

= Sun vs the world

We need strategies to protect our
software investment

Visualization 1998 and Beyond

Hybrid surface / volume rendering

Visualization components
= Fven higher, richer abstractions

Information visualization
= More abstract information
= Space/Time, Uncertainty

Embedded Visualization
= Vis Is just a piece of the puzzle

Surface and Volume Rendering

Tissue Lens

Multi-Modality Fusion

Spatio-Temporal Visualization

S B S—— ,..l..,.'}‘

User Support and
Software Quality

Support

= Mailing List

= Bug Tracking

= Nightly Releases
Quality

= Regression Testing

= Cross Platform Builds
= Coverage Testing

Visualization Toolkit (VTK) Software Process

Requirements Design Implement Test

Major User Defect Configuration
Release Feedback W Tracking Management

Source Code Cross R ,
Maturity Platform egression

Analysis Testing Tests

Green Belt
Projects

. New Quality D
Documentation . Procedures ata

Coverage Dependency

Increased Analysis
Quality Activity

Source Dynamic Source
Code Style Memory Code
Verification Analysis Coverage

Data Query
Coverage

Nightly
Release

14 Years of OO Visualization

Revolutionary changes in hardware
Mature methodologies and languages

But the drivers have changed

And, systems are getting more
complex, multi-disciplinary

