
Corporate Research and Development 
Schenectady, New York 

AN OBJECT-ORIENTED GRAPHICS ANIMATION SYSTEM 

W. Lorensen, M. Barry, D. McLachlan and B. Yamrom 

Information System Operation 

June 1986 

Technical Information Series 

G E N E R A L  E L E C T R I C  

Bill Lorensen
Text Box
This document was scanned using a Visioneer 8900 document scanner at 600dpi. Then, Acrobat 7 was used to run an OCR algorithm. Errors detected by the OCR software were manually corrected. Some text remains as graphics and will not show up during a text search. WEL 7/25/2007



AN OBJECT-ORIENTED GRAPHICS ANIMATION SYSTEM W

W. Lorensen, M. Barry, D. McLachlan, B.  Yamrom 

1. INTRODUCTION 
Two areas of computer science and computer graphics receive considerable 

attention in recent literature. Computer scientists tout the benefits of object- 
oriented systems, promising benefits in system design that will surpass those ob- 
tained using structured programming concepts. Computer graphics researchers 
actively pursue the goal of realism to produce high-quality, three-dimensional 
animation systems. In following sections, this report will first review past work 
in object-oriented systems and 3D computer animation. Then, a design 
methodology is presented that applies the object-oriented philosophy to a 3D 
animation system developed at General Electric Corporate Research and 
Development. Finally, an implementation using C, a portable systems/application 
language, is described. 

2. OBJECT-ORIENTED SYSTEMS 
Object-oriented systems rely heavily on the software engineering concepts of 

Information hiding: 
Details of a system that do not affect other parts of the system are not 
visible from the outside 

Abstraction: 
Entities of a system are grouped according to common properties and 
operations 

Modularization: 
Parts of a system that have localized behavior are grouped together with 
well defined interfaces 

In the context of object-oriented systems, these three principles complement 
rather than compete with each other. No compromises are required to apply all 
three to their limit. 

Object-oriented systems are characterized by abstract constructs called ob- 
jects that contain data and procedures to manipulate that data. The data describe 
the local state of the object and are only accessible to the outside world through 
the object's procedures, called methods, that are executed when the object 
receives a message. Messages are the only means by which objects can communi- 
cate with each other, and they provide a uniform mechanism for inter-object 
communication. An object is created by making a copy or instance of a particular 
class of objects. Classes are the only abstractions of these systems. Not only do 

Manuscript received 3/ 13/86 



they define the data structures associated with the class but also the methods 
for manipulating the data. These data are called instance variables. When an ob- 
ject is created by instancing a class, the object receives not just the data struc- 
tures but also the methods to manipulate the data structures. Through the 
mechanism called inheritance, new classes can be created by sharing the descrip- 
tion of other classes and changing or adding to their data and methods. 

A final important point: only the objects know their data structures and 
methods. Nothing outside the object can directly access these structures. If a new 
algorithm is required to do a task, the data structure may require change, but 
only the object itself is affected by this change. This property applies the 
software engineering notions of information hiding and modularity to data as 
well as procedures. 

2.1 Prior Work 
One early object-oriented system was Ivan Sutherland's Sketchpad [I]. 

Sketchpad is a general purpose graphics system for interactive creation and edit- 
ing of pictures on a graphics display. Geometric transformations were applied to 
master (class) definitions of objects resulting in an instance of the geometric ob- 
ject. Although the concept of an object-oriented system was not defined in 
1963, Sutherland's user-interface had many properties in common with such 
systems. 

The Smalltalk effort [2] at Xerox's Palo Alto Research Center (PARC) is 
most often associated with object-oriented systems. This system uses the con- 
cepts of objects, messages, and classes to produce a programming environment 
and a user interface. It differs from other object-oriented systems in that it does 
not have any conventional typing and procedural constructs that might violate 
the rigorous application of objects and message passing. The only construct in 
the system is an object that even controls program flow. Each class has methods 
it uses to process messages, all of which takes place inside the objects. New 
classes can be defined by adding data and methods to other classes called super 
classes. When a message is received by a Smalltalk object and an associated 
method is found, it is executed; otherwise, the message is passed to the object's 
super class. This process proceeds until the message is either recognized or 
rejected. This hierarchical inheritance property allows the Smalltalk system to 
rely heavily on previous software and to build incremental systems without sub- 
stantial software development. 

The Flavor System [3] of Symbolic's Lisp Machine is an implementation of 
objects in a dialect of Lisp. This system extends the hierarchical inheritance con- 
cepts of Smalltalk classes to allow non-hierarchical combinations of classes 
called flavors. When a new flavor is created, it can inherit the attributes of mul- 
tiple flavors. Methods for handling messages are defined as combinations of 



methods from the other flavors. Conflicts can arise when two combined flavors 
process the same message in different ways, but the flavor concept resolves 
these conflicts in a uniform, prescribed manner. The Lisp Machine Window Sys- 
tem [4] is a practical implementation of flavors. The Window System manages 
communication between processes and the user. The user communicates to 
processes through windows via a keyboard and a pointer device (mouse). 
Methods for windows have been classified into several flavors. For instance, all 
windows use the basic flavor minimum-window. It contains the minimum 
functionality that a window must have to behave as a window. The window flavor 
adds more sophistication. This flavor is the minimum-window plus methods 
(called mixins) to handle stream input, draw borders, draw labels, and do 
graphic operations. When a window is instanced, the process specifies the flavor 
and any initial values for internal states. The Lisp system returns an object 
descriptor of the particular window created. To communicate with the window, 
the process sends messages to the window object, the messages then prescribe a 
uniform syntax and semantics for object communication. For example, to draw a 
vector in a particular window, the process sends the message :draw-line to the 
window and a vector will appear. In summary, the user has complete control
over the characteristics of the window and can easily communicate with multiple 
windows by sending messages to the appropriate objects. The cursors, menu sys- 
tem and keyboard are also handled via the flavor concept. 

3. OBJECT-ORIENTED DESIGN 
The principles and properties of object-oriented systems can be applied to 

the software design process. Examples in the previous section illustrated im- 
plementations of object-oriented systems. In this section, the emphasis is on the 
design process without regard to implementation. The methodology outlined is 
appropriate at both the preliminary and detailed design stages of the software 
engineering life cycle. 

3.1 Booch's Methodology 
Grady Booch [ 5 ]  outlines one approach for designing systems for objects. His 

procedure consists of three steps: 

1. Define the problem. 
This is the conventional process to describe the system to be built. Itera- 
tions with the other steps are required as new aspects of the system are 
discovered. 

2. Develop an informal strategy. 
A written narration is used to describe the operations and objects of the 
system. 



3. Formalize the strategy. 
Using simple rules and the narrative description of the system, identify the 
objects (nouns), attributes (adjectives), and operations (verbs) required. 

Booch uses Adam to describe the visible interfaces to each object and the ex- 
plicit operations that can be applied to the objects. This process is successively 
applied to refinements of the system. Booch uses this methodology to solve five 
design problems ranging from leaf counting on trees to a heads-up display sys- 
tem for fighter pilots. 

At first glance, Booch's approach seems attractive. One just writes down a 
description of the system to be modeled, underlines the nouns (these become 
objects), then the verbs (these become operations) and translates the design into 
Ada. But he has not described a design methodology, only given guidelines for 
translating a design into an object-oriented implementation. Although his 
guidelines are useful for that step, moving from the problem definition step to 
the informal strategy is the most difficult step of the design process. 

3.2 A New Methodology 
This section presents an object-oriented methodology that is intended to 

define the overall design of the system to be developed. The new method does 
not extract objects from the design but builds the design from abstractions of the 
objects themselves. Therefore, the primary effort in this approach is the defini- 
tion and characterization of the abstractions. The following steps are involved: 

1. Identify the data abstractions for each subsystem. 
These data abstractions will be the objects of the system. Often the objects 
correspond to physical objects within the system being modeled. If this is 
not the case, the use of analogies, drawn from the designer's experience 
on past system designs, is helpful. This is by far the most difficult step in 
the design process and the selection of these abstractions influences the 
entire system design. 

2. Identify the attributes for each abstraction. 
The attributes become the instance variables for each object. Many times, if 
the objects correspond to physical objects, the required instance variables 
will be obvious. Other instance variables may be required to respond to 
requests from other objects in the system. 

3. Identify the operations for each abstraction. 
The operations are the methods for each object. Some methods are re- 
quired to access and update instance variables. Others execute operations 
singular to the object. The details of the methods' implementations need 
not be specified now, only the functionalities. 

Ada is a trademark of the Deparment of Defense 



4. Identify the communication between objects. 
This step defines the messages that objects can send to each other. This 
protocol must be decided on by the design team. Consistency in message 
naming should be a primary goal. 

5. Test the design with scenarios. 
Scenarios consisting of messages to objects are needed to test the design's 
ability to match the system's requirements. In fact, the designers should 
write a scenario of messages for each requirement in the system specifica- 
tion. 

6. Apply inheritance where appropriate. 
Once some objects have been designed, common data and operations often 
surface. These common instance variables and methods can be combined 
into a class. This class may or may not have meaning as an object by it- 
self. If its sole purpose is to collect common instance variables and 
methods, it is called an abstract class. 

This process must be repeated at each level of abstraction. Through succes- 
sive refinements of the design, the designer's view of the system changes 
depending on the needs at the moment. Each level of abstraction is imple- 
mented at a lower level until a point is reached where the abstraction cor- 
responds to a primitive element in the design. A new level of abstraction should 
provide some attribute or operation that cannot be expressed at the next lowest 
level. For example, the abstraction of geometric primitives might start with a 
polygon. A rectangle would be defined at the next level of abstraction, followed 
by a square. 

4. COMPUTER GRAPHICS ANIMATION SYSTEMS 
Computer graphics representations have progressed from the early use of 

lines to produce wire frame images of three dimensional models, through simple 
shaded presentations, up to the current state-of-the-art realistic images. This is 
the result of success in defining more thoroughly the models' environment. 
Transparency, translucency, shadows, illumination models, and surface 
properties are a few of the areas where research has produced algorithms result- 
ing in more acceptable synthetic images. The current trend in computer graphics 
is to apply these advanced techniques toward the production of quality anima- 
tion. 

4.1 Prior Work 
Although dozens of films produced using 3D computer graphics have ap- 

peared over the years, the literature has concentrated on the algorithms used to 
produce the images, not on the animation systems themselves. This is probably 
because few general purpose animation systems exist. Most computer-generated 
film production is done by executing a sequence of unrelated programs through 



the control of command files. The major efforts seem to have been in the areas 
of image quality and realism, not on the animation interfaces themselves. 

Reynolds [6] has worked for several years on the ActorIScriptor Animation 
System, ASAS. Originally started as a master's thesis at MIT, ASAS was used 
at Information International Inc., III, to produce sequences for the Disney movie 
TRON [7 j .  ASAS is implemented in Lisp and relies heavily on object-oriented 
concepts. ASAS actors are the participants in the animation, communicating by 
sending and receiving messages. Once an actor is started it remains a part of 
the animation until it stops itself or is stopped by another actor. Actors can also 
be given cues to appear or disappear. The processing of the cues is contained 
within the actors themselves. ASAS, as is characteristic of other Lisp-based sys- 
tems, can use all the power of the Lisp interpreter by extending the capabilities 
of Lisp through new functions and forms. 

The MIRA System [8] also extends a computer language, here Pascal. 
Abstract graphical types are defined to describe the participants in the anima- 
tion. An animation is described by a sequence of scenes, where each scene has 
a name and is a sequence of statements manipulating actors, cameras and 
decor. Decor includes graphical objects that do not change within a scene. 

The DIAL System [9], developed at Brown University, uses a clever two 
dimensional notation to describe temporal relationships. Events contain instruc- 
tions that should be executed when the event is active. Time is represented on a 
horizontal line with special characters denoting execution, continuation of an 
event, and event suppression. The timing of an event is defined by giving the 
event name and a time line to control the execution of the event. 

The efforts of a commercial computer graphics animation company, Pacific 
Data Images, are described in Reference 10. The company produces commercial 
computer-generated animation for broadcast television. Few specifics of the sys- 
tem are given but the overall production process is outlined. This systems dif- 
fers from the previous systems in that an animation language interpreter was 
written in a high level language, C, rather than extending the language itself. 

Finally, reference 11 describes a procedural-based animation system. 
Procedural systems are like object-oriented systems since a procedurally- 
modeled object is entirely described by its procedure and parameters. Rather 
than using message passing for event control, this system uses data flow. Each 
function has pre-defined input data paths through which it receives information 
and output data paths through which it transmits information. 



5 .  OSCAR 
Industrial computer graphics applications share some characteristics with 

those of the university and commercial film communities. Although software for 
modeling and rendering is common to both environments, university and com- 
mercial systems depend on artistic talent to communicate a message through the 
animation. In contrast, the industrial environment is driven by analyses of 
modeled phenomenon. For example, an artistic interpretation of a robot in a 
work environment may show the robot execute apparent realistic motions, 
whereas an industrial robot motion must be predicted by sophisticated kinematic 
analysis. After all, the intent of such an animation is not to produce a pretty 
film but to gain insight into the interactions of the robot with its work environ- 
ment. Also, if the animation is used as a marketing tool, prospective customers 
will not be impressed by an artist's interpretation of how the robot behaves, but 
need to understand how the commercial robot operates in a real environment. 
This is the key difference between this system and those described previously: 
the reliance on analysis rather than art. This also illustrates a problem that this 
animation system must address: the analysis software often already exists with 
its own user interface and data bases. 

OSCAR, the Object-oriented Scene AnimatoR, provides an automated 
graphics animation capability for the efficient creation, control, and management 
of 3D computer-generated animation sequences. OSCAR automates the creation 
of high-quality film and video, showing the results of complex research, experi- 
ments, and other computer-generated analyses. Using an object-oriented script 
language as the user interface, the animation system provides automatic control 
of analysis, modeling, rendering, display, and filming processes. Interfaces have 
been developed for scientific analysis programs in the areas of molecular 
modeling, and robotics, with future interfaces planned to structural analysis and 
factory simulation software. The object-oriented design has produced a system 
that lends itself to interfacing with existing and future in-house and external 
software. 

5.1 The Animation Process 
Several steps are required to produce an animation. It is useful to review the 

process to see what steps can benefit from the proposed animation system. 

1. Determine the intent of the animation. 
Every film is made with some purpose in mind. It could be to verify or 
understand some mathematical algorithm as it relates to a physical 
phenomenon, to explain an abstract concept to an audience, to market a 
product, or to provide entertainment. This creative step is left to the user. 

2. Create a story and write a script. 



description of the story as a script is useful for documenting, changing, 
and creating a final product. The script can be written with a text editor, 
or created with the OSCAR Interactive Script Generator. The scripts in OS- 
CAR consist of statements in an object-oriented language developed as 
part of the system. 

3. Run any simulations. 
OSCAR assumes that most animations depend on some computer model. 
Analysis runs must be made to provide the simulation results for the 
animation. Sometimes, the simulation may be complete before the script is 
written. Simulations are run by external programs called analysts. 

4. Create geometric models of participants. 
Some analyses have geometric models associated with them, while others 
do not. For instance, a structural engineer, doing a stress analysis of a tur- 
bine, models the turbine with finite elements before the analysis is run. 
Here, the model and analysis are tightly coupled: both analysis and display 
require the same model. However, in a molecular mechanics calculation, 
simple cartesian points model the atoms, and connectivity relationships 
model the bonds. Here, more sophisticated geometric models are required 
for the rendering process: spheres and cylinders. Models are created by 
programs called modelers. 

5 .  Render the geometric models. 
This step involves applying computer graphics algorithms to the computer 
geometric model, surface properties, lighting, etc. and producing shaded 
images for display. Rendering is done by programs called renderers. 

6. Preview the animation. 
Fast, interactive preview facilities catch conceptual and mechanical errors 
in the animation. Within OSCAR, a special renderer object allows the user 
to preview animation on the Evans and Sutherland PS300. 

7. Edit the completed frames. 
Frame editor objects create titles, credits, and special effects such as dis- 
solves and fades that add a professional touch to the completed sequence. 

8. Shoot the film or video. 
Recorder objects do this final step in the process that involves selection of 
frames and exposure of the film or video. 

5.2 Major Subsystems 
The subsystem breakdown in OSCAR delegates authority for the steps in the 

animation process and corresponds to software which is already available. We 
use an anthropomorphic flavor throughout the descriptions so that the correspon- 
dence with conventional movie making is maintained. This appears to be a 



natural abstraction to use in the animation system. Figure 1 contains a diagram 
of the system. 

Scrlpt Generation 
actor generator 

Frame Clerk camera generator 
robot generator 

Liaisons ... . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . .  ............. .......... . . . . . . .  ... . 
, 

Analysts 8 
Robot Simulation 
Adina 
Ansys 
Molecular Modelling 

Modellers 

Geomod 
Movie. BYU 
Synthavision 
Other geometric modellers 

Renderers 

Movie. BYU 
Synthavision 
Other renderers 

Figure 1. 

Interactions between objects and programs are described below: 

1. Director is a collection of objects that provides control over all the com- 
ponents of OSCAR. The Director reads and interprets a script and sends 
commands to the other modules to do part of the animation. 

Interactive Script Generator is an object that provides a graphic user inter- 
face for writing scripts. Scripts contain the instructions describing what is 
to occur in the animation sequence. The Interactive Script Generator allows 
the user to position cameras, lights, and to describe the movement of ob- 
jects while seeing a wire-frame image of the objects that will be presented 
in the final film as realistic images. The data that the user inputs is inter- 
preted and stored in a script file. Although the Interactive Script Generator 
provides a user interface for both the novice and experienced user, the ex- 



perienced user can achieve more control by writing or editing the scripts 
with a text editor. 

3. Frame clerk is an object that keeps track of the location of each finished 
frame of the film, notes whether it has been recorded, and archives 
frames when they are no longer needed. Frames can be kept in several 
places: online disk, magnetic tape, and optical video disk. 

4. Liaisons are objects that provide an interface between OSCAR and external 
modules. The Liaisons translate OSCAR-specific information into a form 
their assigned modules (analysts, modelers, or 
and vice-versa. 

5. Analysts are external programs that do analyses in a variety of scientific 
fields. Some examples of the analysis packages that are or will be sup- 
ported include: ADINA, a non-linear finite element analysis program; AN- 
SYS, a general purpose finite element analysis system; MNDO and Gaus- 
sian 80, molecular mechanics programs; and an in-house robot simulation 
program. The interfaces to these software packages cannot be changed, so 
an analysis-specific liaison is required to interface between each analyst 
and OSCAR. 

6. Modelers are external programs that create the geometry of the objects for 
the animation. Typically, they use geometric primitives to build complex 

representations of structures. Modelers available for use include GEOMOD, 
- - - - - - - - - -  

Movie.BYU, and Syn thav i son .  Like the analysts, these systems also have
defined interfaces, and each needs a liaison to translate between the direc- 
tor and the modeler. 

7. Renderers are external programs and objects that take geometric informa- 
tion and environmental information (such as lighting and camera positions) 
from the script and create frames for later display and filming. These ren- 
derers include Movie.BYU and Synthavison. There is a liaison object for 
each external renderer. 

8. Frame editor objects do editing, and provide special effects and titles. These 
objects operate on frames. 

9. Recorder objects do the filming of the sequences. Steps include obtaining 
finished movie frames from the frame clerk, displaying the images in a 
frame buffer, and recording the images on film or video disk. 

5.3 Animation Language Design 
Our animation language uses one statement structure that defines com- 

munication between objects. In each statement, the user specifies an object and 
the messages for that object. In the excerpts from the syntax description of the 



language that follow, capitalized items and characters within double quotes are 
terminal symbols. 

statement := object messages ";" 

object := NAME 

messages := message 
| messages message 

message := PREFIX "?" 
| PREFIX " !" 
| PREFIX " :" argument 
| PREFIX "=" argument 
| PREFIX "@" argument 
| PREFIX "+" argument 
| PREFIX "-" argument 
I| PREFIX "/" argument 
I| PREFIX " *" argument 
| PREFIX "^" argument 

argument := VALUE 
| NAME 
| STRING 
| "(" argument-list ")" 
| " [" object messages "]" 

argument -list := argument 
| argument-list " ," argument 

In the above description, VALUE is a floating point number, NAME is a string 
of characters, STRING is a quoted string, and PREFIX is an optional string. The 
language also allows for C [12] language style comments. Some special charac- 
ters at the start of a line allow the user to do redirection of input and output, 
invoke system routines, and print text at the terminal. The left and right square 
brackets allow the arguments to a message to be obtained from another object. 
The semantics of messages are implemented within the objects themselves. The 
following rules for message suffixes illustrate message semantics: 

? indicates a request for the value of an instance variable. 

= indicates the setting of an instance variable. 



: is used for messages that require arguments, but do not specifically set an 
instance variable. 

@is used for indexing messages. 

t, -, /, *, and ^ terminate arithmetic operation messages. 

! is used for actions not requiring arguments. 

Messages to the same object can be concatenated on a statement. A typical 
statement in the language is: 

ACTOR new: Abox 
position= (0,5,0) 
rotate-x: 30 
color=(1 ,0,1) 
on!; 

Here an instance of the object ACTOR is created with a position and color. 
The object is rotated about its local x axis. An alternate statement, that im- 
proves readability, is provided to produce the same results as above: 

Abox := ACTOR { 
position= (0,5,0) 
rotate - x: 30 
color=(1 ,0,1) 
on! 

}; 

To make another box with the same instance variable values as the first, 

AnotherBox := Abox {); 

A camera can be defined, 

Acamera := CAMERA { 
position= (0, 20, 5) 
view_ angle= 30 

};

and its view reference point can be set to the position of the box by sending a 
message to the box requesting its position, 

Acamera focal_point= [Abox position?] ; 



5.4 OSCAR Classes 
Currently over sixty classes exist in the system. These classes were selected 

using the design process described in Section 3.2. A few of the classes are sum- 
marized here: 

Scenes contain cues and renderers. In addition, scenes have durations (in 
seconds); resolution (in frames per second); and lists of actions to be done 
at the start, during their existence and after the scene is completed. Once a 
scene is started with a start! message, it executes any start actions, and then 
proceeds to send tick! messages to each of its cues. After the cues have 
processed their ticks, the scene sends a render! message to each of its ren- 
derers. On expiration, the scene executes its end actions and sends a 
complete! message to each renderer. 

Cues contain temporal information that controls the presence and behavior of 
a scene's participants. A cue's time interval, during which it is active, is 
defined by a start time and end time. Cues have clocks that advance at a 
cue- specific resolution. When a tick! message is received from another ob- 
ject (typically a scene), the cue advances its clock and sees if it should be- 
come active. If so, executes each of its start and tick actions and advances 
its clock. As long as its clock's time remains within the interval, the cue's 
tick actions are executed each time it receives a tick! message. Once the 
time interval is exceeded, the cue executes its end actions. 

Actors are the geometric objects of the animation. They are described by 
models that are accessed through liaisons to specific modelers. They have 
position, origin, orientation, color, and visibility. Their visibility is controlled 
with on! and off! messages. 

Cameras are the means by which the animation is viewed. In our implementa- 
tion, the Foley and Van Dam [13] viewing transformation pipeline is used. 
Cameras can be moved, rotated, and turned on and off. Cameras have no 
geometric representation so that if one is in the field of view of another, it 
is not seen in the animation. Although multiple cameras can be present in a 
scene, only one camera can be on at one time for a given renderer. 

Lights are objects that illuminate the scene. They have position, color, and 
orientation. Lights can be moved and turned on and off. Multiple lights can 
be present and active at one time. 

Renderer Liaisons are objects that convert the geometric data structures of ac- 
tors into a format that can be rendered by a specific renderer into raster or 
vector images. Typically, when a renderer liaison receives a render! mes- 
sage, it requests position and orientation information from its assigned ac- 
tors, lights, and cameras. Normally, the renderer liaison creates a command 



file that can be run at a later time to do the renderering. Specific renderer 
liaisons inherit some instance variables and methods from a generic ren- 
derer class. This class contains data and procedures that are applicable to 
all renderers. A specific renderer liaison need only provide code for details 
required by its assigned renderer. 

Editors are objects that contain cues and recorders. They are similar to scenes 
in that they send tick! messages to each of their cues and record! messages 
to each of their recorders. Editors are used to manipulate the raster images 
created by renderers. 

Recorders are objects that compose frames from multiple movie frames. Each 
recorder has a list of sequences of movie frames that it can display and 
record. 

Other classes available within the system include matrix transformations, 
splines, scalars, vectors, and collections. 

6. IMPLEMENTATION 
The system has been implemented in C on a Digital Equipment Corporation 

VAX 111780 running VMS, a Sun Microsystems workstation running Unix, 
and an IBM PC/AT running Xenix. The parser was produced using YACC [14] 
and LEX [15]. The parser is an object so that other objects can pass parse: mes- 
sages to it and do parsing at run time. Classes are implemented as C modules. 
C struct's are used to define the instance variables, but the structures themselves 
are declared static so that they are not visible outside the module. There is a 
standard header required for each class and it includes the object name, super 
class, debug information, and other general instance variables. 

Every message is implemented as a C procedure and each class has a 
method dictionary that contains the name of each message and the appropriate 
procedure to invoke. Hierarchical inheritance of both instance variables and 
methods has been implemented. The'message handling is done through a mes- 
sage object that is passed an instance name or pointer, message, and argument 
list. The message object searches the instance's method dictionary. If a match is 
found, the appropriate procedure is invoked. If not, the method dictionary of the 
object's super class is searched. This continues until the highest object in the ob- 
ject hierarchy is reached, at which point an error is printed at the terminal. 
Variable argument handling is implemented by an argument package that keeps 
a stack of sets of arguments. Objects return and receive arguments through this 
mechanism. 

VMS is a trademark of Digital Equipment Corporation 
Unix is a trademark of Bell Laboratories 
Xenix is a trademark of Microsoft 



The system now consists of over 100,000 lines of C code. Extensive use is 
made of C macros to reduce the code for data structures and methods that 
query or update instance variables. Reference 16 contains a detailed description 
of the implementation. 

7. A SAMPLE ANIMATION 
This is a description of a scene showing the results of a robot simulation 

system. 

7.1 The Analysis System 
The analysis package is an in-house system capable of predicting articulated 

robot motion given starting and ending positions of the robot hand. The user of 
this system interactively prescribes key positions of the robot hand, and using 
kinematic techniques, the robot program produces a graphic display of the mo- 
tion of the robot. The program creates a file containing transformations for each 
joint and member as it progresses through the simulation. The geometry of the 
robot required by the analysis system is not elaborate. Prisms are used to model 
members and cylinders are used to model joints. However, for display purposes, 
more realistic representations are used. Here, the robot has been modeled using 
GEOMOD [17], a commercial modeling package from Structural Dynamics 
Research Corporation, SDRC. The transformations produced by the simulation 
are applied to the vertices of the polygons produced by GEOMOD. The renderer 
used is MOVIE.BYU [18]. Liaisons for the robot simulation, GEOMOD, and 
MOVIE.BYU provide the interfaces between each external program and the 
animation system. 

7.2 Script Generators 
A robot usually has many components. Rather than burden the user with in- 

stancing actors for each component, a ROBOT generator object scans user 
specified transformation and modeling files and generates a script. This script 
defines each joint as an actor with its required modeler liaisons. Also, cues for 
key work points in the analysis are generated. This generated script is sent to 
the parser object by the ROBOT generator and is also stored in a text file that 
can be edited at a later time. We have found this concept of a generator to be 
useful in reducing the user's effort in starting a script while still maintaining the 
flexibility offered by the language. 

7.3 The Script 
Three cues are used in this scene. The pan cue moves the camera along a 

path defined by a spline. The simulate cue sends a tick! to the ROBOT liaison 
object. When the ROBOT liaison object receives a tick!, it interpolates the trans- 
formations for each joint of the robot and sends position and orientation incre- 
ments to each joint's actor. The cue labeled both, combines the pan and simulate 



cues. However, it sets the start time for the simulate cue to be 1 second, i.e. the 
robot movement will start 1 second after the camera pan begins. 

/ * 
* First describe the scene 
*/  

scene_1 := SCENE { 
cues = (pan, simulate, both) 
renderers = byu 

/* duration = 3 * robot duration + 5 seconds * /  
duration = [ge-robot duration?] 
duration + [ge-robot duration?] 
duration + [ge-robot duration?] 
duration + 5 

}; 

/ *  
* Next define the participants. 
* For brevity, repetitive statements have been eliminated. 
* / 

ge-robot := ROBOT { 
time=0 
transfile= trans2.dat 
joint_l=(robot_part_1_1) 
/* joints 2 - 9 skipped for brevity */. 
joint _ 1 0=(robot_part_10_1) 

}; 

robotparts := COLLECTION { 
members=(robot_part_1_1 , 
/* robot parts 2 - 9 skipped for brevity * /
robot_part_10_1) 

}; 

/ * 
* Each joint in the robot is an actor 
*/  

robot_part_1_1 := ACTOR { 
modeler=model _ 1 _ 1 

}; 



/* robot part instances 2 - 10 skipped for brevity */ 

/ * 
* Each actor is assigned a modeler 
* / 

model _ 1 _ 1 := GEOMOD { 
universal=trans3.~ni 
object=trans 1 

}; 

/* model instances 2 - 10 skipped for brevity * /

/ * 
* Define cameras and lights 
* / 

camera_1 := CAMERA { 
position=(228, 34.2, 90.0) 
view-up=(0,0,1) 
focal_point=(28.0, 34.2, 36.0) 
view _ angle=45. 
clipping_range=(5., 700 .) 
on! 

light _ 1 := LIGHT { 
position=[camera_1 position?] 
on! 

}; 

byu := MOVIE _ RENDERER { 
actors= robotparts 
cameras= camera _ 1 
lights= light _ 1; 

}; 

pan := CUE { /* path circle, below, is a spline left out for brevity */ 
duration= [ge_robot duration?] 
start-actions= ("path-circle time = O;", "ge _ robot time= 0.;) 



tick _ actions = "camera _ 1 position= ([path _ circle tick!]);" 
}; 

simulate := CUE { 
duration= [ge-robot duration?] . 

start _ action= "ge _ robot time= 0.;" 
tick_action="ge _ robot tick!;" 

}; 

both := CUE { 
duration= [ge-robot duration?] 
duration+ 1 
start _ actions=("ge _ robot time= 0.;", 

"pan time=0 start=0;" , 
"simulate time=0 start=1;") 

/ * 
* Give start times for each cue 
* / 

pan start = 0; 
simulate start = [pan end?]; 
both start = [simulate end?]; 

/* 
* Now run the animation 
* / 

scene_1 start!; 

Notice that the animation script consists of creating instances of objects 
(which are defined as C modules) and specifying values for their instance vari- 
ables. The objects interact with other objects by sending messages. The whole 
animation process is started with the message start! to scene-1. This message 
causes scene _ 1 to advance its own clock, send tick! messages to each of its cues, 
followed by render! messages to each of its renderers. The cues typically 
manipulate actors, cameras, and lights by sending messages to them. The ren- 
derers, on receipt of a render! message, ask their associated actors, cameras, 
and lights for current settings, and produce appropriate movie frames. 



An object-oriented approach to the design and implementation of a computer 
graphics animation system has been described. During this project we have 
made several observations: 

Applying the data abstraction process to the animation production cycle 
has resulted in a natural user interface using familiar terminology. 

The abstraction step of the design is critical and requires the most amount 
of time and effort. The path taken at this point in the design will drive the 
design of the system. 

The object-oriented approach allows the natural partition of complex sys- 
tem into manageable pieces. No single object is complex, but the system as 
a whole can deal with the complexity of the process being modeled. 

The system seems less fragile than others written previously. Objects can 
be modified and added without fear of breaking the system. 

The system as described in this report serves as a starting point for a system 
to be enhanced over the next few years. Liaison objects will be introduced to in- 
terface to more analysis, modeling, and rendering systems. From this system, 
we intend to learn more about the application of the object-oriented approach to 
other areas of computer graphics and computer science. 

9. ACKNOWLEDGMENTS 
The Animation Project team at the Rensselaer Polytechnic Institute Center 

for Interactive Computer Graphics has made many technical contributions to the 
ideas proposed in this report. This group is engaged in a parallel effort to build 
a graphics animation system. Jon Davis of General Electric has provided inter- 
faces to the robot simulation system. 

10. REFERENCES 

[1] I. Sutherland, Sketchpad: A Man-Machine Graphical Communication System, 
PhD Thesis, MIT, 1963. 

[2] A. Goldberg and D. Robson, Smalltalk-80, The Language and Its Implemen- 
tation, Addison Wesley, 1983. 

[3] Lisp Machine Manual. Symbolics Inc., 1983. 

[4] D. Weinreb and D. Moon, Introduction to Using the Window System, Sym- 
bol ic~  Inc., 1983. 

[5] G. Booch, Software Engineering with Ada, Benjamin Cummings Publishing, 
1983. 

[6] C. Reynolds, "Computer Animation with Scripts and Actors," Computer 
Graphics (Proc. of SIGGRAPH '82), vol. 16, no. 3, July 1982, pp. 289-296. 



[7] "Disney Takes the Lead with TRON," Computer Graphics World, vol. 5, no. 
4, April 1982, pp. 41-45. 

[8] N. Magnenat-Thalmann and D. Thalmann, "The Use of High-Level 
Graphical Types in the Mira Animation System," IEEE Computer Graphics 
and Applications, December 1983, pp. 9-1 6. 

[9] S. Feiner, D. Salesin and T. Banchoff, "Dial: A Diagrammatic Animation 
Language," IEEE Computer Graphics and Applications, September 1982, 
pp. 43-54. 

[10] R. Chuang and G. Entis, "3-D Shaded Computer Animation - Step by 
Step, " IEEE Computer Graphics and Applications, December 1983, 
pp. 18-25. 

[11] H. Hedelman, "A Data Flow Approach to Procedural Modeling," IEEE 
Computer Graphics and Applications, January 1984, pp. 16-26. 

[12] B. Kernighan and D. Ritchie, The C Programming Language, Prentice Hall, 
1978. 

[13] J. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, 
Addison Wesley, 1982. 

[14] S. Johnson, YACC: Yet Another Compiler Compiler, Comp. Sci. Tech. Rep. 
No. 32, Bell Laboratories, Murray Hill, New Jersey, 1975. 

[15] M. Lesk, LEX - A Lexical Analyzer Generator, Comp. Sci. Tech. Rep. No. 
39, Bell Laboratories, Murray Hill, New Jersey, 1975. 

[16] W. Lorensen, M. Barry, D. Mclachlan, and B. Yamrom, Object-Oriented 
Software Development in a Non-Object-Oriented Environment, General 
Electric TIE Report, Schenectady, New York, 1986. 

[17] GEOMOD Reference Manual, Structural Dynamics Research Corporation, 
1983. 

[18] H. Christiansen and M. Stephenson, "MOVIE.BYU - A General Purpose 
Computer Graphics Display System," Symposium on Applications of Com- 
puter Methods in Engineering, vol. 2, p. 759, UCLA, 1978. 




