
8 Computer Graphics

V I S F I L E S

Visualization Toolkit Extreme Testing

Bill Lorensen, Jim Miller
GE Corporate Research and Development

Each evening, at 8 p.m. Eastern Time, a
computer process wakes up in a research lab
in upstate New York and initiates a night of
compilation and testing on 11 different
configurations of operating systems and
hardware. The subject of this automated
build and test process is the Visualization
Toolkit, vtk (http://visualizationtoolkit.org/
vtk.html).Vtk is an open source C++ class
library of visualization and imaging algorithms
for UNIX, Linux and Windows.The software

began in 1993 as a sample implementation to
illustrate the algorithms and architectures
described in the textbook, The Visualization
Toolkit : An Object-Or iented Approach to
Computer Graphics . Since then, vtk has
become a powerful, high quality project,
supported by a large global user community
and software developers from the U.S.,
Canada, England and France. Today, vtk has
more than 600 C++ classes and about
100,000 executable lines of code.

From the start, the vtk developers recog-
nized the need to support regression testing.
Visualization continues to be an active field
of research with new techniques being intro-
duced yearly. And even well-designed soft-
ware like vtk requires enhancements to its
underlying architecture. Regression testing
compares the results of software after
changes have been made. The purpose is to
identify changes to software that affect the
output of the software. The vtk regression
testing compares the images generated by

the visualization
algorithms with
baseline images that
developers of the
algorithms have
deemed as valid.The
image comparison
allows control over
how well the images
must match. Images
created using
OpenGL need not
match pixel for pixel,
while those
produced by imaging
algorithms must
strictly match.

Until 1998, the vtk
regression tests
were run manually
on an ad hoc basis
and prior to a major
software release.
The time between
releases was about
six months and

there were hundreds of changes made in the
software, either to correct bugs or add new
capabilities. Before the release, many of the
regression tests would fail and it was an
onerous task to determine which of the
hundreds of changes had caused the differ-
ences between the generated and baseline
images. In January 1998, a General Electric
Company quality initiative motivated the vtk
development team to increase the number
of regression tests and perform the tests
more frequently and automatically. By the
summer of 1998, more than 14 quality
procedures were added to the vtk test suite.
The procedures were placed under control
of a master build and test script that is run
nightly at the GE Corporate Research and
Development Center.At the end of the tests,
the master script generates an html Dash-
board that summarizes the results of the
quality procedures.

The automated, nightly build and test
suites proceeds as follows:
1. The Master queries the source code

repository to see which files have changed
since the previous evening. Summaries of
the changes are kept in a file that is acces-
sible from the Dashboard (see Figure 1).

2. The Master initiates a build on each hard-
ware/software configuration and each
build stores the compiler logs in separate
files. Combinations of operating systems
and compilers assure the vtk remains
portable every day.

3. The Master runs the regression suite on
each configuration. The suite includes
image based C++ and tcl/tk tests as well
as C++ and tcl/tk text tests. The results
are accumulated in logs for each platform.
Each test reports whether it passed or
failed. One of the test platforms includes a
dynamic memory analysis using a
commercial tool applied to each regres-
sion test. The dynamic analysis detects
memory leaks and il legal access of
memory.The memory analysis log is saved
in a file for later processing and reporting.

4. After all the builds and tests complete, the
Master scans the build log files for defects.

Vtk is probably the most widely used
visualization system, so I asked Bill
Lorensen to contribute a VisFiles column
about the reasons for that success. His
article describes their automated testing.

— Bill Hibbard

Figure 1: Changes for the previous day. Each change has a link to the code
repository.

A defect in a build is either an error or
warning. An html summary page is created
that contains each defect with several lines
before and after the defect to give the
message context (see Figure 2).There are
some warnings that cannot be avoided.
Patterns of these warnings are kept in an
exception file so that they can be removed
from the summary page. The number of
errors and warnings are computed and
stored in an html table.

5. The test logs are scanned for defects. A
defect in a test occurs when a test fails.The
Master records the number of tests that
pass and fail in an html table. For each
failed image test, a jpeg is made of the
generated image, the expected image and
the difference of the two (see Figure 3).
These are stored in an html page that is
linked to from the main dashboard page.

6. Each test, on each platform is timed. A
summary of tests that are faster or slower
is created and links are made to plots that
show the variation over the last 10 days
and last 12 weeks (see Figure 4).

7. The test to verify that each class can print
itself is run and the total numbers of
defects are reported on the main dash-
board. A link to the detailed results is
created if there are any defects.

8. A coverage analysis of the regression tests
is run and the coverage listings are parsed
and summaries are created for each
source file.All results are available via html
links.

9. A commercial style checker is run. The
checker is programmed with the vtk
programming style guidelines. The results
of the style checker are summarized and
links placed to the details for each class.

10. The Master scans the dynamic memory
analysis log and summarizes the defects.A
link to the full log is available from this
summary page.

11. The top level Dashboard and all of its link
pages are collected and transferred to an
external web site. These pages are avail-
able to anyone on the Internet (see
Figure 5).

12. Documentation is generated from the
C++ header files using Doxygen (see
Figure 6). These pages are indexed and
packaged into a compressed archive.

13. Downloadable files are created as a
convenience to users:

13. • Linux RPMs that contain executables,
source code and libraries.

13. • A complete installation for Windows
98/NT/2000 as a single executable.

13. • A complete source distribution for
both UNIX and Windows 98/NT/2000.

14. Each morning at 9 a.m. EST, a group
meets in front of a large screen that
projects the nightly dashboard. These

morning “board meetings” have become a
part of our daily work rhythm. The group
reviews the changes for the previous day
and assesses the state of the system.
Simple errors are fixed right away, while
more complex problems are dispatched
to the appropriate developer(s).

The automated nightly testing has allowed
the distributed vtk development team to

continue rapid development of vtk while
maintaining a high quality, robust toolkit. All
developers participate and endorse the test
procedures, agreeing to repair any defects
within 24 hours of introduction. Each devel-
oper has access to all of the test scripts and
baseline data so that they can test before
they check changes into the repository.When
new code is added, the author of the code is

Augus t 2001 9

Figure 2: Warning log. Each error or warning is presented with some surrounding context.

Figure 3: Regression test summaries show generated (left), baseline (center) and difference (right) images.

Figure 4: Test performance. Every test is checked for changes in performance over 10 days and 12 weeks.

expected to add tests to the regression suite
that cover the new code.

The vtk development team has come to
rely on the nightly tests to uncover defects as

soon as they are introduced. The developers,
backed by the nightly process, can enhance
code written by others and make sweeping
changes to the underlying architecture

without fear of breaking any tested portions
of the toolkit. The loss of a single night of
testing makes the whole development team
uncomfortable since we expect the morning
Dashboard to show the current status of the
system.

In September 1999, we added a continuous
build/test that monitors the source code
repository for changes. Once a change is
detected, the continuous build compiles vtk
on one operating system/hardware configura-
tion and runs four “smoke” tests to ensure
minimal functionality. If the build or any of the
tests fail, the process notifies the offending
individual(s) via email that they may have
broken the build (see Figure 7). Except for
two occasions, this extreme form of testing
has prevented a compilation or load error
from stopping the nightly tests.

Since the summer of 1998, more than 700
nightly build/test runs have completed and
nearly 4 million test measurements have been
collected. Over 2,000 continuous builds have
run.

The current vtk testing is built on shell
scripts, cron jobs and a conglomeration of
UNIX tools. The system is very vtk-centric
and would be difficult to duplicate outside
our development environment.That’s the bad
news…the good news is that we are devel-
oping a testing framework for an Open
Source Project sponsored by the National
Library of Medicine (NLM). The testing is for
the Insight Toolkit, a C++ class library that
will provide segmentation and registration
software for biomedical researchers.The new
testing architecture, motivated by our
successful vtk experience, separates the gath-
ering of test results from the presentation of
the results in dashboards. All results are
stored with XML tags. The XML
(http://www.w3.org/XML/) is converted to
HTML using xslt (xml stylesheet language
translator, (http://www.w3.org/TR/xslt/).
Figure 8 shows a sample of the Insight dash-
board.

Many people have contributed to the vtk
nightly build. We especially thank our
colleagues at GE CRD, Majeid Alyassin, Rick
Avila, Dan Blezek, Rusty Blue, Jon Davis, Tim
Kelliher, Annie Kelly, Steve Linthicum, Tony
Pan, Matt Turek and Boris Yamrom. From GE
Medical Systems, we thank Dave Deaven,
Darin Okerlund, Chris Slack and Bill Stoval.

External collaborators have also
contributed to vtk testing. From Kitware, we
thank Lisa Avila, Charles Law, Ken Martin, Bill
Hoffman, Berk Geveci, Amy Henderson and
Will Schroeder.The Kitware folks contributed
to the testing infrastructure, reducing defects
and creating many tests. From Brigham and
Womens Hospital, we thank Mike Halle and
Simon Warfield for running the test suite
remotely. From the Robarts Institute, we

10 Computer Graphics

Figure 5: The vtk Nightly Dashboard.

Figure 6: Generated documentation using doxygen (www.doxygen.org).

Figure 7: The Continuous Dashboard. If the build or tests fail, the offending party is notified via email.

thank David Gobbi for adopting our process
so quickly. From the National Center for
Supercomputing Applications, we thank Randy
Heiland. From the Rutherford Appleton Labo-
ratory, we thank John Biddiscombe. From the
Eastman Dental Institute, we thank Timothy
Hutton.

Lastly, our users have accepted our
extreme testing. Some are even confident
enough to download a fresh vtk release every
morning...after checking the Dashboard of
course!

Feel free to visit the vtk Dashboards. The
Nightly Dashboard at:
http://public.kitware.com/vtk/quality/
MostRecentResults/index.html

And the Continuous Dashboard at:
http://public.kitware.com/vtk/quality/
ContinuousResults/solaris/Continuous
Results.html

Augus t 2001 11

About the Columnist

Bill Hibbard’s research interests
are interaction techniques, data
models and distributed architecu-
tures for numerical visualization.
He leads the SSEC Visualization
Project and is primary author of
the Vis5D and VisAD systems. He
has degrees in mathematics and
computer science from the
University of Wisconsin - Madison.

Bill Hibbard
Space Science and Engineering
Center
1225 W. Dayton Street
Madison,WI 53706
Tel: +1-608-253-4427
Fax: +1-608-263-6738
Email: hibbard@facstaff.wisc.edu
Web: http://www.ssec.wisc.
edu/~billh/vis.html

About the Guest Columnists

Bill Lorensen, Jim Miller
GE Corporate Research and Development
Niskayuna, NY

Figure 8: The Insight Dashboard. A more portable testing framework.

