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ABSTRACT

We propose a new approach to the problem of generating a simple
topologically-c losed geometric model from a point-sampled vol-
ume data set. We call such a model a Geometrically Deformed

Model or GDM. A GDM is created by placing a ‘seed’ model
in the volume data set. The model is then deformed by a re-
laxation process that minimizes a set of constraints that provides
a measure of bow well (be model tits the features in the data.
Constraints are associated with each vertex in the model that con-
trol local deformation, interaction between the model and tbe data
set. and the shape and topology of tbe model. Once generated, a
GDM can be used for visualization. shape recognition, geometric
measurements. or subjected to a series of geometric operations.
This technique is of special importance because of the advent of
nondestructive sensing equipment (CT, MRI ) that generates point
samples of true three-dimensional objects.
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Additional Keywords and Phrases: Deformable Models, Geo-
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1 INTRODUCTION

The development of remote sensing and scanning technology per-
mits the nondestructive examination of an object’s internal struc-
ture. This ability has proven to be essential in numerous engi-
neering and medical fields. It allows for the inspection of me-
chanical parts without destroying the product and tbe examination
of internal organs without operating on the patient. Tbe technol-
ogy generates a discrete tbree-dimensional scalar field where each
value is a measure of some physical property, for example density.
Since this data is produced via point sampling, it inherits
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properties and problems of sampled data. These include sampling
artifacts. spatial aliasing, and noise. The scalar field can be com-
posed of a series of two-dimensional slices, that when stacked.
form the three-dimensional volume. Traditionally, each 2D slice
was viewed separately, requiring a specialist to deduce tbe true
3D structure represented in the data. There are two alternative
methods of displaying and analyzing the raw scalar field. One
treats the volume data in its original form, as in both morphology
and volume rendering [ 1, 2. 3]. The other transforms the data
into something that is more readily displayed, such as a surhce
[4, 5, 6, 7, 8].

However. a more powerful approach generates geometric models
of the scanned objects using the volume data as a measure of
the object configuration [9, 10, 111. This differs from the second
method in that it approximates rather (ban interpolates the data.
Tbe major motivation behind this approach is that a geometric
model provides the greatest number of options for analyzing and
visualizing the original object. Once created, such a model can
be used for inspection, visualization, or subjected to a series of
geometric measurements and operations. Generating a model bas
the effect of removing the “noise” from scanned data making
object identification easier. Defects in an object will result in
a model that is malformed, thus emphasizing the defect. A
geometric measurement, such as volume, may be easily performed
on a geometric model. CSG operations may be applied to both tbe
model and other geometry in order to convey further information
about the extents and interrelationsbips of the structures.

In this paper, we present a methodology for extracting a topolog-
ically closed geometric model from a volume data set. The tech-
nique, called Geometrically Deformed Models (GDM’s), starts
with a simple model that is already topologically closed, and de-
forms the model based on a set of constraints, so that the model
grows (or shrinks) to fit the object within the volume while main-
taining its closed and locally simple (non-self-intersecting) nature.
The initial model is a non-self-intersecting polyhedron that is ei-
ther embedded in tbe object or surrounds the object in the volume
data representation. A function is associated with every vertex
of the polyhedron that associates costs with local deformation,
adherence to properties of simple polyhedra, and the relationship
between noise and feature. By minimizing these constraints, one
achieves an effect similar to inflating a balloon within a container
or collapsing a piece of shrink wrap around an object.
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Figure 1 A surface can be c ‘eated by stitching together the 2D
contours extracted from adjacent slices in a volume data set.

2 PREVIOUS WORK

Previous techniques for extracting three-dimensional geometries
from volume data fall into three categories: contour stitching,
surface construction, and de Formable models. Fuchs, Kedem
and Uselton developed a means of stitching a series of two-
dimensional contours together by fitting a triangular strip between
adjacent contours [6] (Figure 1). Lin, Chen and Chen con-
nected two-dimensional contours using spline theory, quadratic
variation-based surface interpcJation, and dynamic elastic contour
interpolation [5]. In either mtthod, every contour that composes
the object needs to be identified for every slice in the data set. Plus
the complexity of the algorithms increases when adjacent slices
have a different number of c,mtours, referred to as the branch-
ing problem. GDM’s have nei [her of these complications because
they treat the data set as a complete volume as opposed to a series
of slices. This allows the branching problem to be handled im-
plictly by treating concavities in the direction normal to the slice
plane (branches) in the same manner as any other concavity in the
data set. The problem of identl fying all the contours that compose
the object is removed because a GDM naturally probes through
the entire object following all of its branches.

Herman, Frieder, and Artzy tracked the surface of an object
using the voxel data as a graph [4]. A voxel containing the
surface of the object is identified and the algorithm traverses
the neighboring voxels genert ting a topology that is guaranteed
to be closed. This work does not suffer from the branching
problem discussed with contour stitching because the algorithm
follows the surface as it travels through the volume. Lorensen
and Cline developed marching cubes [7] to simply extract a list of
polygons from vohtme data w th no connectivity information. In
their algorithm, a cube is bounded by eight pixels located on two
adjacent slices. Each vertex is coded as either inside or outside
the object relative to the surface defining threshold. Based on
the configuration of vertices that lie inside and outside the objec~
the cube is triangulated, each :riangle indicating a portion of the
surface. Marching cubes was extended into dividing cubes [8] by
Cline et al. Dividing cubes rwrnples the voxels to the desired
display resolution in order to generate points with normals instead
of triangles. Marching and Dividing cubes do not suffer from
the branching problem becau:;e they extract the entire surface
located in the volume. The problem with this group of surface
construction algorithms is thal they are restricted to generating
models where each element ir the model is at most the size of
a voxel, hence they cannot approximate the data. Also, these
algorithms are not applicable :0 the task of generating a closed
model of an object that is nc,t necessarily closed, for instance
the interior of an opened wire bottle. In this case, they will
either extract a model with little resemblance to the desired object,
or they will extract multiple objects. GDM’s on the other hand

can produce models of varying resolution. This provides a data
reduction and aides in the GDM’s ability to “bridge” over the
holes in the boundary of an object.

Kass, Witkin, and Terzopolous have developed snakes [9] which
model the contours of an image by minimizing the energy associ-
ated with a spline. The energy of a snake configuration is based
upon the image and its first and second derivative, the curvature
of the edge components in the image, and the first and second
derivative of the spline. Terzopotshss, Wltkin, and Kass extended
the concept of snakes into symmetry-seeking models [10], that
derive a threedimensional shape from a two-dimensional image
by modelling an axisymmetric elastic skin spread over a flexible
spine. These approaches provide a compact representation of an
object or feature and should be tolerant of noise, but they are cur-
rently limited to 2D data and at most 2.5D models (for symmetry-
seking models). Snakes and symmetry-seeking models can take
advantage of u priori information about the configuration and ori-
entation of the object being modelled, but they do not provide a
multi-resolution approach to probing the data. Finally, since the
internal energy of the spline is a global operation, it would appear
to be difficult to parallelize the algorithm. GDM’s are very similar
to snakes except they can probe volume data, thus generating 3D
models; they can probe the data with a low resolution model then
substitute a higher resolution model; and a GDM is controlled
through local geometric operations on a discrete model, hence it
is easily parallelized.

In another deformable matching technique, Bajcsy and Kovatlii5
used a mukiresohttion approach to elastically deform a known
brain atlas to match a scanned brain[ 12]. This approach decreases
the resolution of the data set then deforms the brain atlas so the
outer edge and ventricles matches the data. The resolution is then
increased and the deformation process repeated. This approach
motivated GDM’s to operate on the slice data as a true volume
and to vary the resolution of the model during its deformation.
The drawback to deforming an atlas to tit an object is that an
atlas is required for every object to be modelled.

The proposed solution of deforming a model to fit an object is

based upon Witkin et al.’s [13] work on energy constraints and
Breen’s work on goal-oriented motion for computer animation
[14], and reflects a simpler approach to the problems presented
by Kass et al. [9], Terzopmdos et al. [15, 10], and Bajcsy et al.
[12]. These other approaches model the elastic nature of a curve
or surface to control the model’s deformation. Such models are
based on the differential equations of elastic materials. GDM ‘s, on
the other hand, do not try to model an elastic substance; in contrast
they model a simpler discrete deforming structure influenced by
local geometric constraints.

3 CONSTRAINT MODELUNG AND MINIMIZATION

GDM’s may be envisioned as a semi-permeable balloon located
inside the scanned object. The balloon expands until its surface
reaches the boundary of the scanned object. The balloon is
actually a collection of discrete polygons. The volume data is
sampled only at the vertices of these polygons. Permeability is
achieved because elements of noise and insignificant features pass
through the faces of the polyhedron, thus allowing the vertices of
the polygonal mesh to miss or work around these elements. By
placing a cost function at each vertex in the mesh, the relevant
characteristics of the balloon can be modelled. By minimizing
these cost functions, the balloon is expanded while maintaining
its topology.
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3.1 CONSTRAINT MODELLING

GDM’s are created using a top down algorithm specification. First
the behavior and characteristics of the model are defined. Then
constraints m-e selected to achieve the desired behavior. Finally,
functions are developed that model the constraints. Three or-
thogonal behaviors must be specified. The first is a mechanism
for generating gross deformations. In the balloon analogy, this
mechanism expands the balloon. Second. a mechanism is needed
rha[ will interact with the data set and identify voxels possibly
containing the object boundary. This function restricts the bal-
loon from expanding through the boundary of the object being
modelled. Finally, since all operations are performed locally and
the boundary of the object may be incomplete, the third function
maintains the local topology of the model. This keeps the balloon
from intersecting itself locally.

Each of these behaviors can be modelled by a term in a local cost
function associated with each vertex in the model (cost functions
are also referred to as potential functions). As each cost function is
minimized. the model deforms while searching for the boundary
of the object and maintaining its topology ([ 11] provides cost
functions suitable for a 2D GDM). At each time step, every model
point has the opportunity to move to a position of lower potential.
Each constraint function, therefore, must produce a lower cost as
the model moves towards satisfying that constraint. The cost for
the current position of the vertex is a linear combination of the
individual cost functions, which allows for one term to dominate
the deformation. Each cost term must therefore have the ability
to assert itself and dominate the overall cost function when its
constraint is being violated, as well as seem insignificant when
its constraint is being satisfied.

The cost function associated with the current location of a model
point is the weighted sum

C’,(,/.//. :) = (/,,D(.I.!/. :) + (111( .r. !/.:) + (JIT, (1)

where:

C’,(r. {I. : ) is the cost associated with this position of the
current model point.

D( .r. {i. : ) is the potential field that drives the model point
towards the boundary.

1( .r. V. : ] is the image term that identities feature events,
T, is a measure of how the local configuration of polygonal

faces satisties the topology of the model,
({~~.(J1. II2 are the individual weighting coefficients that allow

the magnitudes of the various parameters to be
scaled,

C,(.r. :/. :). D(.r. {I. : ). 1(.r. v. :). ~,.flo. (II. f{j z 0.

3.1.1 DEFORMATION POTENTIAL — D(.r. {/.:)

The deformation potential defines a scalar field where each posi-
tion in space is assigned a value based on a frame of reference. In
this case. a frame of reference can be any configuration of image
or model parameters. The frame of reference may be a point in-
side the feature to be model led. or it may be a set of vertex points
in their previous configuration. The deformation potential must
monotonically decrease (or increase) from the frame of reference
and will repel (or attract) the current model point away from (or
towards) its frame of reference.

Normal ‘Ikacking: Simple concave models can be created using
a localized deformation potential. Each vertex is attracted to a
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Figure 2 Surface normals directing a model to bend around a
concavity.

point located in the direction of the polyhedron surface normal at
that vertex. During each deformation cycle, each vertex moves in
the general direction of the local surface normal. As a concavity
is encountered, the topology and image event constraints influence
the deformation, The surtiace normal rotates around the concavity,
allowing the model to continue its deformation inside of the region
that was previously hidden from view (Figure 2).

3.1.2 IMAGE EVENTS — 1(.r. //. : J

This class of constraint counterbalances the deformation potential.
It is used to restrict, direct. tsnd oppose the general progression of
the deformation. Basically this constraint informs the vertex that
it may be in contact with a voxel containing the original object
(feature voxel). This constraint need not be able to distinguish
noise and object since at the resolution of I voxel the two are
indistinguishable, but must be able to identify the transition from
a region of the data set that could be a feature to a region of the
data set that is definitely not a feature. The important aspect of this
constraint is that it introduces a local minimum at boundary events.
Operations that identify boundary events include digital gradients
[16], the Canny operator [ 17], and morphological opcmtions [2].
Although any of these opcrfitor\ would \uffice. GDM’\ can operate
with a much simpler event detector.

A shifted threshold opemtor

where:

l)t),/!/I (r. y. : ) is the grcy-level intensity of the voxel at
(X,y,z),

T is a threshold value that identities the object:

is shown in Figure 3. Recall that the image event detector
identifies the transitions from regions that are definitely not-object
to regions of the image that could be object. The threshold, T.
categorizes each voxel as either not-object or possibly object.
Here a voxel that is not part of the object returns a value of
zero, while a voxel that i\ part of the object returns the amount it
exceeds the object identit’ying threshold. The image event operator
in conjunction with the minimization process and the trilinear
interpolation of voxel values allows for the true object edge to
be located. When a model point steps over the edge of an object.
1( .r. g. : ) returns a value that should increase the overall cost
of the system. The minimization process is forced, therefore, to
either move the vertex by a smaller amount or to not move the
vertex at all. Hence the vertex will approach the edge without
crossing over it (unless it\ nei.gbbors pull it over the edge).
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Figure 4 (a) A local solid motel can be cut out of a GDM, by assuming that adjacent neighbors are connected in a fashion that will
close the local solid model. (“~) A vertex is conlained by its base if the projection of the vertex onto the base is a point interior
to the base. (c) The ratio of :he distance between a model point and the centroid of its neighbors to the maximum dimension of
the base plane gives an estimate of the curvature.
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Figure 3 The image event dete;tor used for GDM’s is a simple
shifted threshold (.1- – T)+. H,:re the cost function returns zero
if the voxel value is below the edge threshold, otherwise it returns
a value that indicates how much the voxel value exceeds the edge
threshold.

3.1.3 MAINTAINING TOPOLOGY — T,

The final constraint maintains the topological integrity of the
model and controls the spatial frequency of the model. The first
two constraints cause the model to deform until all the vertices
reach the boundary of the object. These two constraints are
not sufficient to extract a georr etric model from real data. For
instance, the boundary of the objsct may be incomplete, consisting
of gaps and holes. This may allow the vertices of the model to
leak out of the object and travc I without restriction towards the
boundary of the data set. Alternatively, the data set may have
elements of noise that could cz use the image event detector to
incorrect ly categorize the noise as the boundary of the object.
These two situations, coupled with the expansion or lack of
expansion of the remainder of tht model, may result in a geometric
model that has little resemblance to the original object.

h is therefore necessary to have the geometry of the model irrflu-
ence a portion of the deformation. Since a topologically simple
geometric model is desired, a constraint is added to the system that
will maintain the locally simple nature of the initial model. The
topological constraint is also referred to as a maintenance con-
straint. This term also controls the spatial frequency of the mcdel
by keeping vertices from leaking out of the holes in the boundary
of object, as well as preventing vertices from being caught on an
element of noise. These two behaviors are essentially duals. In
the case of a vertex leaking out of a hole, there is a single vertex
that is continuing its deformation while its neighbors have reached
the bounda~ of the object. In the case of noise confrontation, a
single vertex believes that it has found the boundary of the object
while its neighbors continue their deformation. In either case, the
faces associated with this vertex will become much larger than
the faces in the immediate vicinity.

It is desirable for a vertex not to stray far from its neighbors or
have its neighbors stray far from it. h is also desirable that the
topology be maintained. Therefore, a vertex should be contained
by its neighbors. A solid can be formed by the current mcidel
point and its neighbors. Imagine that the current model point and
its neighbors are cut out of the GDM. By connecting the adjacent
neighbors, a solid is created. (Figure 4(a)). Any face of this
solid that contains the current model point is also a face of the
GDM, Any face strictly composed of the current model point’s
neighbors is not a face in the GDM, but will be referred to as
the “base” in the new solid. For a planar ‘‘base’”, the current
model point is contained by its neighbors if, when it is projected
onto the base plane, the projected point is in the interior of the
polygon defined by the base (Figure 4(b)). If the “base” is not
planar, this concept can still be applied to a polygon that is a
planar approximation to the base.

Curvature Estimation: Keeping a model point contained by its
neighbors while keeping the model point from straying too far
from its neighbors suggests that the local curvature of the model
should be constrained. The ratio of the distance from the current
model point to the centroid of its neighbors and the maximum
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disttince belwccn the rrcighhors of the current model poim gives
tin indication 01’the curvature (Figure 4(c)). This mtio defines the
topologicid constraint

,,
(././/.:)- +~(J’, .#) .:/)

~; . —- 1
(3)

lll:ix( ll(.l’, .!/, .:,1 – [.r A. YA. :A)ll)
,A

where:

(r. (i. : ) is [ht curren[ model poim,
t) is the number of neighbors to the current model point,
(.[’, .!/,. :,1. (.!’h. [/k. :L ) are (he neighbors of the current

model poinl. 1 ~ ,j. L ~ It.

Thi\ function dirccvs Ihc vertex towtirch the centroid of the btise,
which in turn. attcmpIs to mtihe all the faces incident to the current
model point coplanar. Since all the vertices arc simultaneously
trying to mo\fe onto the plane of their neighbors, the entire model
defauhs to being spherictil (in [he absence of the other constraints).
Dividing Ihc distwscc 10 the centroid by the maximum bme point
repartition mointains \cale invurionce.

3.2 OPTIMIZATION METHOD

The cost function minimization technique utilizes an adaptive
~lgorithm to move a vertex of the model in the direction of steepest
descent tilorrg the cost surface. This direction is opposite to the
gradient of the C(MIfunction C ,. and is estimated by numerically

(
<fiq

)
approxirnuting the differentials ,,, . ,,,, . ,j The amount

that it point moves is adjusted based upon the current configuration
of the COSIspace. The stepsize can be reduced three times if
movement by the current \tepsize results in an increase in the
COSIfunction, If a step cannot be completed that will reduce the
cost of the vertex point, then [he vertex point is not moved. For
the purposef of geometrically deformed models, the stepsizes are
maintained in [he ronge of [ l/4, I ] voxels. This allows for rdpid
changes in the dimensions of the model when it is in a void,
m well a\ fine adjustments in the model when it encounters an
elcmcot of noise or the boundary of the cavity.

This technique will lind local minima. No global minimization
techniques such m simulated annealing [1Xl are performed; so
global minima urc not tilways found: however, a gradient descent
has pro\en sufficient for the data sets tested. The algorithm
actually exploits the l~ct that only local minima are found, by
detining its cost functions to introduce local minima whenever
a critical point is crossed. A critical point occurs whenever a
maintemmcc constr~in~ (T, ) is violated or when a possible feature
\,oxel is encountered.

4 3D MODELS

The initial model chosen for 3D GDM’s is an icosahedron. An
icowthedron is 020 sided approximation to a sphere. The method-
ology does no[ require an icosahcdron for its initial model; it was
simply chosen for the property that when resampled, forming a
geodesic. the connectivity remaim relatively uniform. Triangular
faces ensure thtit the laces of the model are planar ond allow the
model the greatest degree ot’ flexibility when fitting the scanned
object. Each vertex in an icosahedron is connected to five other
\wtices, If the entire icosahedmn is resampled, then each new
vertex is six connected while the original vertices remain five
connected. All vertices added through subsequent global resam-
plings of the geodesic result in new vertices that are six connected

Figure 5 An icosahedron “s triangular Iacc is divided into four
faces by connecting the midpoints of etich edge. The connectivity
of the new vertices i\ six while the connectivity of the original
vertices remains tive.

while maintaining the 12 original vertices as five-connected. Fig-
ure 5 illustrates how the triangular faces in an icosahedmrr can
be resampled to form the faces of a geodesic [ 191. Bisection Ot
each edge produces three vertices that are connected to form four
fhces from the original f~ice.

A global resampling of a GDM follows the same \teps as a global
resampling of a geodesic. It is irrelevant that the fices of the GDM
may not be as regular as the faces of a geodesic. Any triangular
face can be divided into four fwes by connecting the midpoint\ of
the edges. A global resamplirrg of a GDM refines the entire model
on command. This allow\ a low resolution model to probe the
data initially, while a higher resolution GDM can be substituted in
order to capture finer detail. Using an initial low resolution GDM
greatly reduces the computation time in extracting models. Note
that the number of vertice\ increase\ with the number of edges
(each edge is subdivided to form a new vertex). The number of
vertices in the globally resampled model is roughly four time\ the
number of vertices in the original model.

Although a global resampling of a GDM retinef the model. the in-
crease in the number of model points limits its appeal. After each
refinement, the amount of work to deform the model increa\e\
b? a factor of four. Thus a global resampling must be used judi-
CiOUSly. Alternatively the resampling may be localized, increas-
ing the complexity of the model only in those regions where it
is nece\sary.

A local resampling can be performed in two operations. The
first operation identities the regions of the model that need 10
be resamplcd. The second step subdivide\ the msociotcd face\
while maintaining the topological database wrd keeping all Iaccs
triangular. The simplest way to identify the regions of the model
that need to be resampled if based upon the desired level of detail.
The level of detail in the extrdcted model is essentially the number
of voxels approximated by a single face. Thu\ in order to maintain
the level of detail, subdivide the face\ that exceed the lhreshold \ct
by the level of detail. Identifying these faces can be accomplished
by a simple area calculation. Miller [20] discusses the details of
face resampling

5 CREATING GDM’S

Before a GDM can mobc J data set. several txwameter\ and
facets of the algorithm’ must be specified: the obje~t (( )I,jt{v ) and
not-object (-) classification, the deformation mode (grow,
shrink), and the GDM p~rameters (~1~,.(I1. {IJ. T,). Fortunately
this process benefits from the high degree of duality inherent to a
GDM. Figure 6 and Table 1 summarize the duality between both
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Table I Duality relationships
(a)

1Image
I ■ object

Duals •1 7=
Definition _ IImage

Duals
Definition

Duals
+-

Deformation
Process

Grow Shrink

Figure 6 Duality relationships - the rows indicate duals formed
by changing the deformation mode while the columns indicate
duals formed by changing the object definition.

the deformation mode and objet t classification. Growing a GDM
with one classification of ol~je~tand - results in the same
model as shrinking a GDM witt the roIes of object and -
reversed. The two models differ only in deformation time.

Due to the resampling process e:nbedded in the GDM topological
database, it is possible for a vel~ex to be added to the model on
the wrong side of the object -+ m boundary. Recall that
the minimization technique doe! not allow a vertex to move to a
position of higher potential. Therefore all of the model points will
approach the boundary of the ob,ject from the same side. A model
point that tries to move to the opposite side of the boundary will
have its image event detector active and thus will have a higher
potential. But the resampling a gorithm may place new vertices
on the opposite side of this boundary. Therefore, in order to
move these model points to the other side of the boundary and
hence increase the accuracy and quality of the model, the surface
normal used in the deformation potential is defined to point in
the opposite direction. This lot ally flips the deformation mode
(i.e. from growing to shrinking) The effect is that a model point
will migrate towards the true boundary of the object regardless of
whether the model point is Iocaled in Object or’.

Object

El
Shrink

(b)

a
Shrink

(d)

tEIQl
Grow

(c)
Grnw

(e)

Figure 7 A GDM intersects the boundary of the Object
~m. The two deformation modes are equivalent in this
case because the normals locally flip (dotted arrows indicate a
change in the deformation sense).

A beneficial side effect of a GDM locally reversing the sense of
deformation is related to the placement of the initial model. As
long as the initial model intersects the Object ~ - bound-
ary (i.e. some of the model points are inside object, the remain-
der are inside not-object), the model tends to seek out the true
boundary of the object regardless of the deformation mode. This
is a direct consequence of the duality and locality of deforma-
tion modes. Note that the model extracted from growing will
differ from the model extracted by shrinking only by the dimen-
sions of the boundary. Figure 7(a) shows a model intersecting
an object ~ - boundary. The deformation direction is
shown for shrinking (Figure 7(b)) and growing (Figure 7(c)) a
model. The solid deformation arrows indicate the deformation
direction agrees with the primary deformation mode while the
dotted deformation arrows indicate that the deformation mode has
locally flipped sense. Figures 7(d) and (e) show the models at
a later time step. Note that the two models approach the same
boundary but they approach the boundary from different sides.

The duality and locality of deformation modes works in favor of
a GDM if the GDM intersects both object and not-object and if
the GDM does not intersect muhiple objects. If a GDM does
not intersect both regions of the data, then the deformation mode
must agree with the placement of the initial model (in object or
not-object). If the deformation mode is indeed correct, the GDM
process extracts a geometric model of the boundary of the object.
Otherwise, the GDM either collapses upon itself or extends out
to infinity. Note that from the duality and locality of deformation
modes, either case is feasible with either deformation mode.

Our experiments show that the GDM parameter values (00, a ~. (IZ)
are relatively data independent. This is due to aII. 01, a2 governing
the GDM process, not the sampled data. Table 2 summarizes
the suggested parameter values. Note that the object classifying
threshold, T, is data dependent.

6 RESULTS

The 3D GDM figures all present a GDM expanding within an
object. The figures contain four frames. The first frame shows the
initial model (upper-left). The second frame (upper-right) shows
the model after several iterations. The third frame (lower-left)
presents the GDM after an initial convergence to the shape of the
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3D Parameters 

Deformation Gain a0 1 

Image Event Gain al 1 

Topological Gain a2 5 

Resampling Threshold face area 10 

Table 2 3D Suggested Parameters 

object. The final frame (lower-right) presents the final model. The 
final model was created by performing a global resampling on the 
GDM after the initial convergence to the shape of the object. The 
GDM was then allowed to converge to the shape of the object 
a second time. 

6.1 CUBE 

The first 3D example is an artificially generated cube with one 
of its comers removed (Figure 8). The voxels inside the cube 
were assigned one intensity while the voxels outside the cube 
were assigned a different intensity (creating a 64x64~64 volume). 
The initial model consisted of 20 triangles and the resampling 
algorithm added roughly 1000 triangles. A global resampling was 
then performed to increase the model quality. The final model 
contains 4080 triangles. The marching cubes model consists 
of 11528 triangles. Therefore, a substantial data reduction was 
achieved (1000 triangles vs. 11528 triangles) before the final 
global resampling was applied (1000 face model is in the lower- 
left of Figure 8). A moderate data reduction is achieved if a 
final global resampling is applied to the model after the initial 
convergence (4080 triangles vs 11528 triangles). The lower-right 
frame of Figure 8 shows the 4080 triangle GDM. The entire 
deformation required 50 iterations (approximately 15 minutes on 
an HP9000 835). 

6.2 TURBINE BLADE 

The next 3D GDM example is a cooling chamber of a turbine 
blade. The source of the data is 96 industrial CT slices (256 by 
256). The data is very clean, and the resulting GDM is shown 
in Figure 9. This model consists of 6560 faces and required 
100 deformation cycles (approximately 30 minutes on an HP9000 
835). The marching cubes model for this object is composed of 
19000 triangles. 

6.3 TOOTH 

The final 3D GDM is a model of the nerve in a tooth (Figure 10). 
The tooth was scanned using industrial CT (161 slices at 256 by 
256 pixels). The initial model was placed in one of the roots 
of the nerve. This GDM illustrates that highly concave models 
can be created. The final model has remarkable detail and is 
composed of only 7392 faces while the marching cubes model for 
this object is composed of 20944 triangles.. This model required 
200 deformation cycles (approximately 1.25 hours on an HP9000 
835). 

6.4 VERTEX GENERATION 

Figure 11 shows a GDM where each vertex is assigned a scalar 
value based upon the generation (deformation cycle) of its cre- 
ation. The red vertices were created early in the deformation, 

Figure 8 A 3D GDM expanding within a cube with a comer 
missing. The final model is composed of 4080 faces. Note that 
the comers and edges of the cube are rounded. The topology 
constraint lowered the spatial bandwidth of the model below the 
spatial bandwidth of the original data. 

Figure 9 A 3D GDM of the cooling chamber in a turbine blade. 
The normal tracking deformation potential allows for the concave 
model to be extracted. 

hence they are the oldest vertices. The yellow and green ver- 
tices were added later in the deformation process, hence they are 
progressively younger. Finally the blue vertices were added to 
the model as it approached its final orientation, hence they are the 
youngest of all. This illustrates how the vertices are added only in 
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Figure IO The  nerve  in a too:h is modelled through  a highly
concave GDM.

Figure 11 The  GDM  has its */ertices  colored based upon the
generation which  the vertex was created. This illustrates that
model points are only added in the regions of the model still
expanding.

the regions of the model that  are still deforming. This emphasizes
the importance of the proper selection of the initial location for
the GDM.  The GDM  should  be placed such  that  the model can
deform across the maximum number  of fronts.  This figure also
illustrates the locality of the resampling algorithm. Since vertices
are only added in the region still deforming, the colored model
has a series of “bands”.

7 DISCUSSION

A GDM’s performance can be measured by the quality of the
final  model and the amount of time required to generate the
model. Several factors influence  both  of these measures. These
include apriori  information, the weights associated with  the GDM
constraints,  global crossings,  locality  of measures, and precision.

A priori information about an object’s geometry can be presented
to a GDM  in the form  of its initial configuration. This informa-
tion can influence  the initial size and shape of the model. Our
experiments  show  that  the initial shape  of the model does not af-
fect the quality of the final GDM  model. A simple convex model
such  as an icosahedron can be deformed to fit a topologically  sim-
ple object with the same  level of success as a more complicated
initial model. The initial size of the model also has little effect
on the quality of the final GDM.  Both  the size and shape of the
model, however, may influence  the time required to extract the
final model. The  closer  the initial model is to the size and shape
of the final model, the less time that  is required to extract the
GDM  since the vertices of the GDM  have  less distance to travel
in order to find the boundary of the object.

The parameters  presented in Table 2 are for the most  part data
independent; however, a GDM’s performance is greatly affected
by their values. The weights were  devised  to compensate for
any scale invariance in the constraint  functions and to scale each
constraint function  to the same  order of magnitude. If these
weights are altered, one constraint function may dominate the
deformation  and result in a malformed GDM.

Since GDM’s  are currently ruled by local constraints, there is
a possibility  that  the model will self-intersect.  The GDM  has no
means of knowing that  the model has self-intersected  globally  and
will continue to deform. This can result in a model that  continu-
ously intersects itself. The  probability  for self-intersection  can be
minimized by presenting GDM’s  only with topologically  simple
objects to model. Unfortunately, even  using topologically  sim-
ple objects, self-intersection  is possible.  There exist topologically
simple data sets that  cause a GDM  to fold into itself. Objects
with  components of high  spatial frequency can cause such  an oc-
currence.

GDM’s are governed by local geometric operations. The size
of the neighborhood  used to calculate  the geometric measures
influences  the GDM  process. If the neighborhood is too large,
the measure is not really local. If it is too small, the measure
may not be accurate. The surface normal  defines the deformation
potential’s influence  on the deformation direction. Ideally,  the
surface normal can be calculated  as the shared normal  of all the
incoming faces to that  vertex; however, through  experimentation it
has been  found that  the GDM  process is more  stable when  a larger
neighborhood of faces is used to calculate the surface  normal (a
GDM is stable if global crossings do not occur).  For instance,
using  the incoming faces and the faces  adjacent to them  provides
the GDM with added stability;  however, if this  neighborhood is
made too large, then  the surface normal  in not accurate and the
added stability  of a large neighborhood is lost.

The  presentation thus  far has hinted that  a lack of precision may be
the cause of a number of GDM idiosyncracies.  The  sensitivity  of
weights, global crossings in simple objects, and the surface normal
stability  are a function  of precision. After all, the geometric
measures are composed of a series of floating  point operations.
Each operation reduces the numerical precision.  This can easily

224



@ @ Com~uter GraDhics, Volume 25, Number 4, JUIV 1991

expltiin the global crossings in a simple object. An edge of a
concavity can be smaller [him the faces in the GDM, [f new
vertices are added in this region, imprecision may place them
on different sides of the edge m perhaps within the other faces of
[he model, The surhce normal ctin also be affected by a lack of
precision. If the faces in the model are rather small, small errors
in arithmetic can produce a large errors in the sur~dce normal,
Therefore the larger neighborhood is essentially Wrfonning a low
pass filter on tbe surface normals in order 10 compensate, for
precision problems. Precision also limits the choice of initial
models. For example. a 640 point geodesic approximation to a
sphere of radius I created a very nonuniform model until the size
of the model increased to a sphere of reasonable radius,

8 FUTURE WORK

The fmmework for CIDM’s is complete; however, there are a
few ideas and concepts that could not be completely investigated.
These concep(s are secondary in nature. in that they are not essen-
tial to tbe theory or operation of a GDM. but they may improve
perfomuuw or create additional applications. The current imple-
mentation of GDM’s was established so that various ideas and
geometrical rclaticsnships could be tested with relative case. As
such, the implementation is fw from optimal. An alternative data
structure [hat slore~ semi-permanent relations (information thal is
constant through a deformation iteration) could reduce the defor-
mation time by an order of magnitude.

Future research efforts should concentrate on two basic areas:
model quality and alternative data sets. Model quality may be
improved by an alternative resampling algorithm and by prevent-
ing global crossings (model self-intersection), GDM’s should also
be extended to automatically handle data sets with multiple ob-
jects and to handle higher dimensional spaces, for instance time
varying volumes,

9 CONCLUSION

A GDM extracts a closed topologically simple (non-self-
intersecting) geometric model of an object located in a discrete or
continuous data set. An initially closed model is embedded in the
data set and defomled to fit the object through the minimization
of a set of constraints. These constraints are local operations that
quantify the deformation, the properties of simple polyhedra, and
the relationship between object and not-object. The final model
remains closed. because the initial model is closed and the con-
straints used to deform the model maintain the closed and locally
simple nature.

The major benetit of GDM’s is that they aggregate sampled data
by placing geometrical relationships on the model, as opposed
10 interpreting and analyzing the sampled data directly. This
allows the model to interact favorably with artifacts of noise that
either remove portions of the boundary or insert false boundaries.
GDM’s are highly adaptive allowing for a generic initial convex
model to be transformed into a highly concave object. Alternative
initial models can be used that reduce the deformation time.
GDM’s explicitly hitndle the branching problem, multiple contours
in one slice of a volume data set mapping into one contour in an
adjacent slice, by treating a collection of 2D slices m a true 3D
data set, Therefore. concavities in the direction normal to the slice
plane are treated with [he same mechanism as any other concavity
in the data set. GDM’s can use a local resampling algorithm to
minimize the amount of work required to deform a model and to

increase the model’s quality. Tbe level of detail can be set by the
user, so quick estimates of an object can be generated and later
refined for higher quality, GDM’s provide a considerable data
reduction in comparison to traditional techniques,

A GDM can be used for visualization, object recognition, geomet-
ric measurements, or subjected to a series of geometric operations,
Applications abound in such fields as medicine, where GDM’s
could be used to genemte models of internal organs: engineer-
ing, where GDM’s could be used to model scanned mechanical
parts or their fwlts: and science. where GDM’\ could be used to
model higher dimensional spaces not accessible using traditional
algorithms.

The computation 10 extract a model is proportional to the size and
complexity of the object, not the size of the original data. GDM”\
are controlled through local geometric operations rather than the
physical modelling of an elastic or plastic structure, hence tbe
computations are much simpler. Finally, the dual GDM problem
may be simpler to solve. rc\ulting in a model of the same quality
as the primal problem but with a much shorter deformation time.
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