
An Object Oriented Design of a
Graphics Animation System

William Lorensen
Graphics Engineer

Information System Operation
Corporate Research and Development

Bldg KW Room D209A
8*235-8995

Abstract

The software literature has many papers expounding the benefits of object oriented systems for developing
complex software systems. Some feel that object oriented programming will be in the 80's what structured pro-
gramming was in the 70's. This paper investigates the application of the object oriented philosophy to the design of
a 3D computer graphics animation system currently under development at the General Electric Corporate Research
and Development Center. After a general description of object oriented systems, the paper offers a design method-
ology which can be used regardless of the object oriented capabilities of the implementation language. This method-
ology is used to design the animation system itself. The proposed system will provide an animation script interface
to a suite of analysis, modelling, rendering, display and filming software and a sequence database to track the prog-
ress of the animation through its various stages. The animation system will produce high quality film and video ani-
mation of industrial applications such as robotics, structural analysis, molecular modelling and factory simulation.
The system is targeted for users who are familiar with their own analysis but not with the intricacies of computer
graphics displays and software. A flexible system is proposed which allows the integration of new analysis, model-
ling and rendering software.

/- 1. Introduction. 2.1 Characteristics of Object Oriented Systems.

Two areas of Computer Science and Computer Object oriented systems rely heavily on the
Graphics are receiving considerable attention in re- software engineering concepts of
cent literature. Computer Scientists are touting the 1. Information hiding: Details of a system which do
benefits of object oriented systems, promising benefits not affect other parts of the system are not visible
in system design that will surpass those obtained using from the outside.
structured programming concepts. Computer Graph-
ics researchers are actively pursuing the goal of real- 2. Abstraction: Entities of a system are grouped ac-
ism in the production of high quality, three dimen- cording to common properties and operations.
sional animation systems. In following sections, this 3 . Modularization: Parts of a system which have lo-
paper will first review past work in object oriented sys- calized behavior are grouped together with well
tems and 3D animation. Then, a design methodology defined interfaces.
is presented which applies the object oriented philoso-
phy to a 3D animation system currently being In the context of object oriented systems, these three
designed at the General Electric Corporate Research principles complement rather than compete with each
and Development Center. Functional requirements other. No compromises are required to apply all three
for the animation system are defined followed by a to their limit.
high level system design and a detailed design of one Object oriented systems are characterized by
of the major modules of the system. Finally, an i m - abstract constructs called objects which contain data
plementation i s proposed using C , a and procedures to manipulate that data. The data de-
systems/application language. scribe the local state of the object and are only accessi-

2. Object Oriented Systems.
ble to the outside world through the object's pro-
cedures. These procedures are called methodsand are

This section describes the characteristics of object activated when the object receives a message. Mes-
oriented systems and then reviews some systems sages are the only means by which objects can com-
which use these concepts. municate with each other and provide a uniform

mechanism for inter-object communication. An ob-
ject is created by making a copy or insranceof a particu-
lar class of objects. Classes are the abstractions of

Bill Lorensen
Text Box
This document was scanned using a Visioneer 8900 document scanner at 600dpi. Then, Acrobat 7 was used to run an OCR algorithm. Errors detected by the OCR software were manually corrected. Some text remains as graphics and will not show up during a text search. WEL 7/28/2007

Bill Lorensen
Text Box
This paper was originally presented at the Fifth General Electric Software Engineering Conference, April 30-May 3, 1984, Daytona Beach, Florida.

these systems. Not only do they define the data struc-
tures associated with the class but also the methods for
manipulating the class. When an object is created by
instancing a class, the object becomes the data and the
methods to manipulate the data. New classes can be
created by sharing the description of another class and
modifying or adding to i t with data and methods. This
mechanism is called inheritance.

This system extends the hierarchical inheritance con-
cepts of Smalltalk classes, allowing non-hierarchical
combinations of classes called flavors. When a new
flavor is created i t can inherit the attributes of multiple
flavors. Methods for handling messages are defined as
combinations of methods from the other flavors.
Conflicts can arise when two combined flavors process
the same message in different ways but the Flavor
concept resolves these conflicts in a uniform,

A final important point: only the prescribed manner, The Lisp Machine Window Sys-
about their data structures and methods. Nothing out- tem [4] is a practical implementation of Flavors. The
side the object can directly access these structures. If a Window System manages communication between
new algortihm i s required to perform a task, the data processes and the user. T h e user communicates to
structure may require change but only the object itself processes through windows via a keyboard and a
i s effected by this change. This Property applies the pointer device (mouse). M e t h o d sfor windows have
software engineering notions of information hiding been classified into several flavors, For instance, a l l
and modularity to data as well as procedures. windows use the basic flavor minimum-windon.. It con-
2.2 Previous Work.

The first object oriented system referenced by
most papers is Ivan Sutherland's PhD thesis [1] .This
was a general purpose graphics system for interactive
creation and editing of pictures on a graphics display.
Geometric transformations were applied to master
(class) definitions of objects resulting in an instance of
the geometric object. Although the concept of an ob-
ject oriented system was not defined in 1963,
Sutherland's user-interface had many properties in
common with such systems.

The Smalltalk effort [2] at Xerox's Palo Alto Re-
search Center (PARC) is the most familiar object
oriented system. This system uses the concepts of ob-
jects, messages and classes to produce a programming
system and a user interface. It differs from other ob-
ject oriented systems in that it does not have any con-
ventional typing and procedure constructs which
might violate the rigorous application of objects and
message passing. The only construct in the system is
an object. Even program flow is controlled with this
construct. Each class has a number of methods it uses
to process messages. All processing takes place inside
the objects. New classes can be defined by adding data
and methods to other classes called super classes.
When a message is received by a Smalltalk object and
an associated method is found, it is executed; other-
wise, the message is passed to the object's super class.
This process proceeds until the message is either
recognized or rejected. This hierarchical inheritance
property allows the Smalltalk system to rely heavily on
previous software and to build incremental systems
without substantial software developmen!. The most
familiar objects in Smalltalk are the windows one sees
on a Smalltalk screen.

The Flavor System [3]of Symbolic's Lisp Machine
is an implementation of objects in a dialect of Lisp.

tains the minimum functionality that a window must
have to behave as a window. The window flavor adds
more sophistication. It is the minimum-windon. plus
methods (called mixins) to handle stream input, to
draw borders, to draw labels and to do graphics. When
a window is instanced, the process specifies the flavor
and any initial values for internal states. Lisp returns
an object descriptor of the particular window created.
To communicate with the window, the process sends
messages to the window object. The messages
prescribe a uniform syntax and semantics for objecl
communication. For example, to draw a vector in a
particular window, the process sends the message

to the window and a vector will appear. In
the following excerpt from a Lisp program, a window
is created and graphics operations are performed in
that window:

; first create a window of flavor 'window'
; initialize instance variables as follows:

borders are 4 lines thick
, edges are from the mouse

a label is displayed
expose i t

(setq my-window (make-window
':borders 4
':edges-from ':mouse

':label "my very own"

; draw some graphics in the window

; a line from to
(send my-window ':draw-line 10 10 50 70)
; a circle at of radius 10

(send my-window ':draw-circle 50 50 10)
; a circle at (50,50) of radius 5 using exclusive or
(send my-window ':draw-circle 50 50 5 tv:alu-xor)

The above window can respond to the graphics mes-
sages because the flavor window includes the graphics-
mixin. In summary, the user has complete control
over the characteristics of the window and can easily
communicate with multiple windows by sending mes-
sages to the appropriate objects. The cursors, menu
system and keyboard are also handled via the Flavor
concept.

3. Object Oriented Design.

Having described object oriented systems, i t is ap-
propriate to see how the principles and properties of
these systems can be applied to the software design
process. The examples of previous sections illustrated
implementations of object oriented systems. This sec-
tion concentrates on the design process without regard
to actual implementation.

The methodology outlined here is appropriate at
both the preliminary and detailed design stages of the
software engineering life cycle. The design proceeds
from a functional requirement which describes the
overall goals and capabilities of the system.

3.1 Booch's Methodology.

Grady Booch [5] outlines one approach for design-
ing systems with objects in mind. His procedure con-
sists of three steps:

1. Define the problem.
This is the conventional process to describe the
nature and scope of the system to be built. Itera-
tions with the other steps are required as new as-
pects of the system are discovered.

2. Develop an informal strategy.
A natural English description is used to describe
the operations and objects of the system.

3. Formalize the strategy.
Using simple rules and the informal description
of the system, identify the objects (nouns), attri-
butes (adjectives) and operations (verbs) re-
quired.

Ada @is used to describe the visible interfaces to each
object and the explicit operations which can be applied
to the objects. This process is successively applied to
refinements of the system. Booch uses this methodol-
ogy to solve five design problems ranging from leaf
counting on trees to a heads-up display system for
fighter pilots.

Ada is a trademark of the Department of Defense.

At first glance, Booch's approach seems attractive.
Just write down a description of the situation to be
modelled, underline the nouns (these become ob-
jects), then the verbs (these become operations) and
translate the design into Ada. But he has not de-
scribed a design methodology. He has given guide-
lines for translating a design into an object oriented
implementation. In fact, his guidelines are useful for
that step. However, moving from the problem
definition step to the informal strategy is the most
difficult step of the process.

3.2 A New Methodology.

This section presents an alternative object oriented
methodology which is intended to define the overall
design of the system to be developed. Once this
design has been established, the techniques of the pre-
vious section can be used to describe the strategy and
translate it into an implementation. The new method
does not extract objects from the design but builds the
design based on abstractions of the objects them-
selves. Therefore, the primary effort in this approach
is the definition and characterization of the abstrac-
tions. The following steps are involved:

1. Identify the data abstractions for each subsystem.
These data abstractions will be the objects of the
system.

2. Identify the attributes for each abstraction.
These will be the instance variables for each ob-
ject.

3. Identify the operations for each abstraction.
These will be the methods for each object.

4. Identify the communication between objects.
This step will define the messages which objects
can send to each other.

This process must be repeated at each level of abstrac-
tion. Through successive refinements of the design,
our view of the system will change depending on our
needs at the moment. Each level of abstraction will be
implemented at a lower level until we reach a point
where the abstraction corresponds to a primitive ele-
ment in our design. Each level of abstraction should
provide some uniqueness that cannot be expressed at
the next lowest level. After a review of current graph-
ics animation work, this methodology will be applied
to the design of the animation language.

4. Computer Graphics Animation Systems.

Computer graphics representations have pro-
gressed from the early use of lines to produce wire
frame images of three dimensional models. Extensive
research over the past ten years has seen a progression
from these crude mathematical renderings, through

simple shaded presentations, up to the current state-
of-the-art which includes more realism in the results.
The realism is the result of success in modelling more
realistically the models' environment. Transparency,
translucency, shadows, illumination models and sur-
face properties are a few of the areas where research
has produced algorithms resulting in more acceptable
synthetic images. A browse through the proceedings
of the ACM's Special Interest Group in Graphics,
SIGGRAPH, provides a historical review of the in-
creasing sophistication of advanced image synthesis.
The current trend in computer graphics is to apply
these advanced techniques toward the production of
quality animation.

4.1 Previous Work.

Although dozens of films produced using comput-
er graphics have appeared over the years, the litera-
ture has concentrated on the algorithms used to pro-
duce the images, not on the animation systems them-
selves. This is probably because few animation sys-
tems exist. The films are used as a vehicle for illus-
trating the results of the algorithms or to make an
artistic statement. Most of the film production is done
by running a sequence of unrelated programs through
the control of command files. The major effort has
been on image quality and realism, not on the anima-
tion interface itself. The current leaders in this type of
animation include the New York Institute of Technol-
ogy (NYIT), Ohio State University, Lucas Films (of
Star Wars fame), Cornell and Information Interna-
tional (III). Recently a new company, Digital Produc-
tions, was formed [6] to create 3D animation using a
Cray supercomputer.

A few of the animation systems that have been de-
scribed are included in this section. Reynolds[7] has
worked for several years on the Actor/Scriptor Ani-
mation System, ASAS. Originally started as a
Master's Thesis at MIT, ASAS was used at Informa-
tion International Inc., III, to produce sequences for
the Disney movie TRON [8]. ASAS is implemented
in Lisp and relies heavily on object oriented concepts.
ASAS actors are the participants in the animation.
They communicate by sending and receiving mes-
sages. Once an actor is started (instanced) it remains a
part of the animation until it stops itself or is stopped
by another actor. Actors can also be given cues as to
when they should appear or disappear. The processing
of the cues is contained within the actors themselves.
Characteristic of other Lisp-based systems, ASAS can
use all of the power of the Lisp interpreter, only hav-
ing to extend the capabilities of Lisp -through new
functions and forms.

The MIRA System [9] also extends a computer
language, in this case Pascal. Abstract graphical types

are defined which describe the participants in the ani-
mation. An animation is described by a sequence of
scenes. Each scene has a name and is a sequence of
statements manipulating actors, cameras and decor.
Decor includes graphical objects which do not change
within a scene.

The efforts of a commercial computer graphics ani-
mation company, Pacific Data Images are described in
[10] . The company produces commercial computer-
generated animation for broadcast television. Few
specifics of the system are given but the overall pro-
duction process is outlined. This systems differs from
the other two in that an animation language inter-
preter was written in a high level language, C, rather
than extending the language itself.

Finally, [11] describes a procedural based anima-
tion system. Procedural systems are akin to object
oriented systems in that a procedurally modelled ob-
ject is entirely described by its procedure and parame-
ters.

5. The CRD Animation System.

Industrial computer graphics applications share
some characteristics with those of the university and
commercial communities. Software for modelling and
display (rendering) is common to both environments.
However, university and commercial systems assume
some artistic talent to communicate a message
through the animation. On the other hand, the indus-
trial environment is driven by analyses of modelled
phenomenon. For example, an artistic interpretation
of a robot in a work environment may show the robot
go through apparent realistic motions, whereas an in-
dustrial robot motion must be predicted by sophisti-
cated kinematic analysis. After all, the intent of such
an animation is not to produce a pretty film but to gain
insight into the interactions of the robot with its work
environment. Also, if the animation is used as a
marketing tool, prospective customers will not be im-
pressed by an artist's interpretation of how the robot
behaves but need to understand how the actual robot
will perform. This is the key difference between this
system and those described previously: the reliance on
analysis rather than art. This also illustrates a problem
that this animation system must address: the analysis
software often already exists with its own user inter-
face and data bases.

The proposed system will provide an automated
graphics animation capability for the efficient creation,
control and management of 3D computer generated
animation sequences. The graphics animation system
will completely automate the creation of high quality
film and video showing the results of complex re-
search, experiments and other computer generated

analyses. Using an English-like script language as the
user interface, the CRD animation system will provide
automatic control of analysis, modelling, rendering,
display and filming processes. Interfaces will be devel-
oped to analysis programs in the areas of structural
analysis, molecular modelling, robotics and factory
simulation. An open-ended design is proposed to sim-
plify interfacing to existing and future CRD/external
software. A generic animation language, frame and
sequence databases and sequence editor are key sys-
tem features.

5.1 The Animation Process.

Several steps are required to produce an animation.
It is useful to review the process to see what steps can
benefit from the proposed animation system.

1. State the intent of the animation.
Every film is made with some purpose in mind. It
could be to verify or understand some mathemat-
ical algorithm in relation to a physical
phenomenon, to explain an abstract concept to an
audience or to market a product.

2. Create a story and write a script.
Creation of the story is a mental process that can-
not be assisted but the description of the story as a
script is useful for documenting, changing and
creating a final product.

3. Run any simulations.
The proposed system assumes that most anima-
tion will depend on some sort of computer model.
Analysis runs must be made to provide the simu-
lation results for the animation.

4. Create geometric models of participants.
Some analyses have geometric models associated
with them while others do not. For instance, a
structural engineer performing a stress analysis of
a turbine models the turbine with finite elements
before the actual analysis is performed. Here, the
model and analysis are tightly coupled: both anal-
ysis and display require the same model. How-
ever, in a molecular mechanics calculation, sim-
ple cartesian points model the atoms and connec-
tivity relationships model the bonds. In this case,
more sophisticated geometric models are re-
quired for the rendering process: spheres and cyl-
inders.

5. Render the geometric models.
This step involves applying computer graphics al-
gorithms to take the computer geometric model,
surface properties, lighting, etc. and producing
images for display.

6. Preview the animation.
Fast, interactive preview facilities catch conceptu-
al and mechanical errors in the animation.

7 . Edit the completed frames.
Titles, credits and special effects such as dissolves
and fades add a professional touch to the complet-
ed sequence.

8. Shoot the film or video.
This is the final step in the process and involves
selection of frames and exposure of the film or
video.

5.2 Major Subsystems.

The subsystem breakdown is chosen to delegate
authority for the steps in the animation process and to
correspond to software which is already available.
This is a conventional, function oriented design since
many of the modules already exist or behave as in-
dependent subsystems. An anthropomorphic flavor is
used throughout the module descriptions so that the
correspondence with conventional movie making can
be maintained. This appears to be a natural abstrac-
tion to use in the animation system. Modules interac-
tions with other modules in the system are also de-
scribed.

1. Director.
This module reads a user's story or script and
delegates responsibilities to the rest of the
modules. It knows who should do what and when
but doesn't know how the other modules do
things. The user interface to this module is
through an Animation Script which can be en-
tered into a file manually or produced via an In-
teractive Script Generator. The scripts are written
in a very generic fashion. The intent is to provide
full animation capabilities but to keep the style
and semantics uniform. Typically, the other
modules in the system understand different
languages. The burden of translation is not on
the Director but is delegated to modules called
Liaisons.

2. Liaisons.
Liaisons translate the Director's commands into
commands their assigned modules can under-
stand. Likewise, they accept input from these
modules and send it to the Director in a form the
Director can understand.

3 . Sequence Clerk.
This module is a clerk for the Director. It keeps
track of the stage of each piece of the animation
by storing status information in a sequence data

base. The data base itself is hidden within the
module but can be accessed via messages from
the other modules. If the Director needs to know
the status of any part of the animation i t can ask
the Sequence Clerk.

4. Analysts.
These modules perform analyses in a variety of
scientific fields. They are very intelligent and act
as technical consultants to the Director.
Although they have their own way of doing 8.
things. they can be told when to start and to re-
port when they are done. A sampling of Analysts
include ADINA, a non-linear finite element anal-
ysis program; ANSYS, a general purpose finite
element analysis system; MNDO and Gaussian
80. molecular mechanics programs; and GRASP,
the General Robot Arm Simulation Program.
The interfaces to these modules are already
defined and cannot be changed. Since these
Analysts have pre-established interfaces, each
one is assigned a Liaison to act as a go-between
with the Director. The Liaison module is able to
translate the Directors non-technical requests
into command sequences which the Analysts
understand.

Modellers.
These modules provide a means of creating
models for the animation. They typically use
some geometric primitives to construct complex
representations of structures. GEOMOD,
Movie.BYU, the Calma Solid Modeller and the
Rensselaer Polytechnic Institute (R.P.I.) Build
program are a few of the modellers available at
CRD. R.P.I. is also working on a new interactive
modeller called TIM which will take advantage of
high performance vector graphics devices. Ex-
cept for TIM, these systems also have predefined
interfaces and once again the Director talks to
them through Liaison modules. Also, since an
animation will often contain many different types
of models, a Coordinator is required to combine
the models into a homogeneous format the
Director can control.

6. Coordinator.
The Coordinator can combine geometric
representations of many modellers and create
homogeneous representations that a given
Renderer can understand. It communicates be-
tween the Liaisons of Modellers and Renderers.

7 . Renderers.
These modules take geometric information and
environmental information such as lighting and
camera positions and create raster image files for

later display and filming. They have varying de-
grees of sophistication and are always wary that
they can be replaced by more sophisticated
renderers. Movie.BYU, Synthavision and the
R.P.I. Super Quadric renderer are examples of
such modules. Each system has its own language
it understands and its own way of saving images.
Liaisons will interact with the Director to control
them.

Editor.
The Editor takes animation sequences kept by the
Sequence Clerk and adds special effects, titling
and the like. Finished frames are sent to the
Frame Clerk.

9. Frame Clerk.
The Frame Clerk's job is to keep track of where
each finished frame is, whether i t has been
recorded and also to archive frames when they are
no longer needed. It knows several places i t can
keep frames; online disk, magnetic tape, optical
video disk and other Vaxes in the network.

10. Recorder.
The Recorder knows how to perform the actual
filming of the sequences. It obtains finished ras-
ter frames from the Frame Clerk, displays the im-
ages in a frame buffer and records the images on
film or video. The Recorder knows everything
there is to know about the operation of cameras,
displays and video disk equipment.

5.3 Animation Language Design

The animation language is designed by describing
the object classes comprising the animation. In each
case, a description of the object class is given and
some indication about the operations i t understands.
No attempt is made at this point to tell how the object
performs. This decision will be delayed until the latest
possible time in the design. There are two high level
abstractions present in the system:

Scriptscontain a complete description of an ani-
mation sequence and can be considered the
input of the animation process. A script has a
file name and collections of objects called
scenes, clocks and cues. Scripts are stored in
files and can be created using a text editor or
by the Interactive Script Generator. Opera-
tions that can be performed on these objects
include: parsing and execution.

Stripsare the output of the system. These objects
consist of ordered collections of frames.
They can be created, edited and exposed.

The abstraction process continues with a description
of the objects comprising the next level of abstraction.
These are objects which are used to build the high lev-
el objects described above.

Scenesare collections of animate and inanimate
objects and a description of their surrounding
environment. Scenes have names, status in-
formation, actors, cameras, lights, props and
backdrops. They can be created, edited, pre-
viewed and rendered.

Clocksare the time keepers of the objects. They
have a resolution and speed. They can be
created, modified, and turned on or off.
Clocks send tick messages to each scene and
animate participant in a scene. Other objects
can have their own clocks to time their own
activities.

Cameras are the objects through which the anima-
tion is viewed. These objects contain loca-
tion, direction and focal length. They can be
moved, rotated and turned on and off. Cam-
eras have no geometric representation so that
if one is in the field of view of another, i t is
not seen in the animation. Although multi-
ple cameras can be present in a scene, only
one camera can be on at one time. When a
particular camera is activated, i t sends a mes-
sage to all the other cameras so that they can
deactivate themselves.

Lightsare objects that illuminate the scene. They
have position, color, type (flood, point) and
direction. Lights can be moved, rotated and
turned on or off. Multiple lights can be
present and active at one time.

Cuescontain temporal information to control the Propsare inanimate objects in the scene. Their

presence and behavior of a scene's partici- position is specified once and remains the

pants. They have time intervals over which same for the entire scene. They can be

they receive messages. They can be created, moved by other actors though. The point is,

edited and previewed. they cannot change on their own.

Frames are ordered collections of raster images. A Backdropsare raster images with no graphics

frame corresponds to one physical frame in structure. They may be backgrounds painted

the final animation sequence. Multiple raster into a frame buffer with a paint program or

images are often required to build one frame. images scanned into a file with a video digi-

The order reflects the sequence in which the tizer. Backdropscan be created and stored.

raster images should be displayed in a frame
buffer. Frames also have status information
and an identifier. They can be created, edited
and previewed.

Notice that as the abstraction process progresses, the
objects are broken down into more manageable pieces.
Also several common operations surface such as crea-
tion, editing and previewing which will add a uniform-
ity to the final design. When a new operations is pro-
posed on a given class of object, it is appropriate to ask
whether that operation can be applied to other classes.
This provides a completeness to the class operations.

For this paper, the abstractions are carried one step
further.

Actorsare the animate objects of the scene. They
are described by geometric or procedural
models. They can also have analysis results
associated with them. They can be rigid bo-
dies, non-rigid bodies or procedural bodies.
Their behavior can be described as a function
of time. Their timing is controlled via clocks.
Actors can be created, moved, rotated,
turned on and off or told to follow the results
of some analysis. Actors can send messages
to other objects in a scene.

Raster imagesare two dimensional arrays which
have no structure, just pixel values, associat-
ed lookup tables and optional z buffers to
maintain depth information. They can be
stored, displayed and interpolated.

The abstraction process continues in this manner until
no more new objects are required.

6. A Sample Animation.

This is a description of a scene showing the results
of a robot simulation system. The syntax of the ani-
mation language is still not finalized but the script does
give the overall intent of the system.

6.1 The Analysis System

The analysis package is called GRASP, the Gen-
eral Robot Arm Simulation program. GRASP is capa-
ble of predicting articulated robot motion given start-
ing and ending positions of the robot hand. The user
of this system interactively prescribes key positions of
the robot hand and using kinematic techniques,
GRASP produces a graphic display of the motion of
the robot. The program also outputs into a file the
transformations for each joint and member as i t
progresses through the simulation. The geometry of

the robot required by the analysis system is very sim-
ple. Prisms are used to model members and cylinders
are used to model joints. However, for display pur-
poses, more realistic representations are used. Here,
the engineer modelled the robot using GEOMOD, a
commercial modelling package from Structural
Dynamics Research Corporation, SDRC. The
transformations produced by the simulation are ap-
plied to the vertices of the polygons produced by
GEOMOD. More sophisticated representations such
as super quadrics could be used. The geometric com-
plexity of the robot is independent of the the analysis.

6.2 The Story.

The scene starts outside a work cell. The work cell
is an enclosed room with one door. The door is closed.
As the door opens, the camera enters the work cell,
panning around the room. The work cell contains:

i. A robot.

ii. A table containing work pieces.

iii. A drill press which is used to machine the pieces.

iv. A conveyor belt used to transfer the pieces to the
next work cell.

After the room is panned with the camera, the robot
begins to move according to the results of the simula-
tion. It picks up pieces from the table and moves them
to the drill press. After the piece is processed on the
drill press, the robot picks up the piece and places it on
the conveyor belt. The process is repeated using vari-
ous camera angles.

6.3 The Script.

Objects are instanced from a class by the 'is a'
operation. Each object contains a series of methods
which consist of a method name followed by a colon.
Subsequent statements are messages to be sent to oth-
er objects or the object itself. To make the language
less cumbersome, some non-object oriented syntax is
used. For example, the statement

resolution = 24

really translates into the following:

send self 'resolution 24.

This causes the instance variable resolution to be
changed from it's default value to 24. The other
method names are self-explanatory.

* first describe the scenes

is a scene
initial:

actors
cameras =
lights right),
props = work-table,

clock = scene-1-clock,
cues

is a clock
initial:

resolution= 24,
start =0 , .

duration = 1 minute.
I

next define the participants
*

GP66 is an actor (
initial:

'GEOMOD',
analyst = 'GRASP',
renderer = 'MOVIEBYU',
type = 'robot'.

tick:
send analyst 'tick.

is a camera
initial:

lens = 'wide-angle'.
I

Camera-2 is a camera
initial:

lens = 'regular-lens'.
I

Light-left is a light
initial:

type = 'flood',
color = 'red'.

I
Light-right is a light (

initial:
type= 'point',
color = 'white'.

I
Work-table is a prop

initial:

type= 'table'.
I

Drill-press is an actor
initial:

type = 'tool'.

Clock-1 is a clock (
initial:

resolution 24,
time = 0.

is a time-interval
initial:

start = 10 seconds,
duration= 30 seconds,
increment =

tick:
send camera-1 'rotate increment.

is a time-interval
initial:

duration = 15 seconds.

*
* define the temporal relationships
* /

startup is a cue (
initial:

time-start = 0,
duration = 10 seconds.

start:
send camera-1 'on,
send light-left 'on,
send light-right 'on,
send work-table 'on,
send drill-press 'on,
send GP66 'on.

end:
send pan 'start.

I
pan is a cue

initial:
interval = cam 1-action.

start:
send camera-1 'on.

tick:
send camera-1 'tick.

end:
send simulate 'start.

I
simulate is a cue

initial:
interval =

start:
send camera-2 'on.

tick:
send camera-2 'tick,
send GP66 'tick.

/ *
now run the animation

*
send scene-1 'run.

Notice that the animation really requires creating in-
stances of objects and specifying values for their in-
stance variables and methods to handle messages.
The objects interact with other objects by sending
them messages. The whole animation process is start-
ed with one message to the scene.

7. Implementation.

The animation system design is nearing comple-
tion and thoughts are turning to the implementation.
C [12],a portable system/application language will be
used. The current strategy calls for the implementa-
tion of a flavor-like facility and C is attractive because
of its dynamic memory allocation support, data struc-
ture capabilities and pointer features. The initial im-
plementation will support a limited number of
analysts, modellers and renderers. Additional module
support will be added once the system's capabilities
have been demonstrated.

8. Summary.

An object oriented approach to the design of a
computer graphics animation language has been de-
scribed. It has been illustrated that the data abstrac-
tion process is the critical step of the design process of
object oriented systems. Besides creating a useful ani-
mation system, this work is meant to provide a testbed
for using the object oriented approach to system
design and implementation. The lessons learned in
going through this rigor will improve our understand-
ing of the object oriented methodology. The same
technique will be applied to the design of the Se-
quence Clerk, Frame Clerk, Liaisons, Editor and
Recorder.

9. Acknowledgements.

The Animation Project team at the Rensselaer Pol-
ytechnic Institute Center for Interactive Computer
Graphics has made many technical contributions to
the ideas proposed in this paper. This group, led by
Gray Lorig, is engaged in a parallel effort to build a
graphics animation system. The CRD project expects
to benefit from their expertise in the areas of model-
ling and sophisticated rendering software. Jon Davis
of CRD's Solid Mechanics Branch has provided inter-
faces to the GRASP robot simulation system. Vince
Scavullo of the Information System Operation offered
many helpful refinements during the preparation of
this manuscript.

0. References.

1. 1. Sutherland, "Sketchpad: A Man-Machine
Graphical Communication System," PhD Thesis,
MIT, 1963.

2. Byte, August 1981.

3. Lisp Machine Manual. Symbolics Inc., 1983.

4. D. Weinreb and D. Moon, "Introduction to Us-
ing the Window System," Symbolics Inc., 1983.

5. G . Booch, "Software Engineering with Ada,"
Benjamin Cummings Publishing, 1983.

6. "Beyond Special Effects," Computer Graphics
World, vol. 6, no. 1, January 1983, pp. 63-66.

7. Reynolds, Craig W., "Computer Animation with
Scripts and Actors", Computer Graphics (Proc.
of SlGGRAPH '82), vol. 16, no. 3, July 1982, pp.
289-296.

8. "Disney Takes the Lead with TRON" , Comput-
er Graphics World, vol. 5, no. 4, April 1982, pp.
41-45.

9. N. Magnenat-Thalmann and D. Thalmann, "The
Use of High-Level Graphical Types in the Mira
Animation System", IEEE Computer Graphics
and Applications, vol. 3, no. 9, December 1983,
pp. 9-16.

10. R. Chuang and G. Entis, "3-D Shaded Computer
Animation - Step by Step," IEEE Computer
Graphics and Applications, vol. 3, no. 9, De-
cember 1983, pp. 18-25.

11. H. Hedelman, "A Data Flow Approach to Pro-
cedural Modeling," IEEE Computer Graphics
and Applications, vol. 4, no. 1, January 1984, pp.
16-26.

12. B. Kernighan and D. Ritchie, "The C Program-
ming Language," Prentice Hall, 1978.

