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Abstract

We present a new method for the visualization of
8D vector fields called the stream polygon: a regular,
n-sided polygon, oriented normal to the local vector.
The polygon can represent local deformation due to
rigid body rotation and both normal and shear sirain.
In addition, the effects of translation and scalar func-
tions may be represented by sweeping the stream poly-
gon along the streamline, and by appropriately vary-
ing the radius and shading the surface of the resulting
streamiube. In this paper we develop a mathematical
foundation for the stream polygon, and provide ezam-
ples with application to velocity field visualization.

1 Introduction

Scientific and engineering analysis programs pro-
duce a variety of information that challenges the visu-
alization process. No single representational technique
can hope to provide insight into all types of analysis
data. In three and four dimensional analysis, both
input geometric representation and computed results
vary depending on the application and the type of
analysis. To enhance the understanding of the results
of these analyses, scientific and engineering visualiza-
tion systems must provide tools that can show scalar
and vector quantities in the context of the underlying
geometry.

Scalar data, represented as a single value at each
computational point, is often represented as a color
that varies over some continuous range. Scalars can
also be used to warp a geometry along a user-specified
vector. Contours, for 2D analyses, and iso-surfaces, for
3D analyses, are other useful graphical representations
for scalar information. These facilities are available,
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in one form or another, in most visualization systems.

Vector data, with three or more values per compu-
tational point, is another common form of engineering
and scientific data. Typical examples include the ve-
locity field due to fluid flow, or the displacement field
as a structure is loaded.

There are three common techniques for visu-
alizing vector data. These are hedgehogs[Sta89],
streamlines{FM73), and domain deformation. Hedge-
hogs represent the vector field by drawing oriented,
scaled lines along the direction of the local vector.
Streamlines are paths that are everywhere tangent to
the vector field, and are often thought of as represent-
ing the path that a massless particle would take in a
fluid. Domain deformation represents the vector field
by distorting the local geometry according to the vec-
tor data. For example, to represent the displacement
of a structure, the image would be distorted according
to the vector field representing displacement. Each of
these techniques has proven its value for visualizing
and understanding data. However, these techniques
fail to provide an understanding of the local deforma-
tions that exist within the vector field.

Non-uniform vector fields give rise to local defor-
mation consisting of both rigid body motion as well
as strain. Rigid body motion includes local transla-
tion (motion in the direction of the local vector) and
rotation. Strain, which can be considered the local
deformation not due to rigid body motion, consists of
both normal strain (uniform deformation in a partic-
ular direction) and shear, or angular deformation.

The three vector field visualization techniques de-
scribed above generally represent local deformation
due only to translation. Another technique proposed
by Volpe[Vol89] represents rotation by using an ori-
ented streamribbon (as compared to a streamline).
The streamribbon is a strip of polygons, or ribbon,



whose edges lie along two streamlines. Alternatively,
the streamribbon can be constructed by placing the
strip of polygons along a streamline, and orienting the
surface according to the rigid body rotation. None
of these techniques directly represents strain, which
for many applications can be quite important. For
example, many materials cannot effectively support
shear strain. Hence when performing structural anal-
ysis these areas must be identified and removed if pos-
sible.

This paper presents the stream polygon, a new 3D
vector visualization technique that can show both lo-
cal deformation and strain. The stream polygon is a
regular n-sided polygon oriented normal to the local
3D vector. The local effects of rigid body motion and
strain may be represented by rotating and deform-
ing the polygon. In addition, by sweeping the stream
polygon along the streamline, and shading the surface
and appropriately varying the radius of the resulting
streamtube, the effects of translation, vector magni-
tude, and scalar functions may be represented as well.

2 Characterizing the Vector Field

Before describing the stream polygon, it is neces-
sary to characterize the vector field. Here we are inter-
ested in describing local deformation, as well as tech-
niques for computing the local vector and derivatives
at any point in the vector field.

2.1 Local Deformation

Consider the vector field V consisting of the m lo-
cal vectors v = (u,v,w). To examine the local de-
formation due to V at the point x = (z,y, 2), a first
order Taylor’s series expansion of v about x is con-
structed. Then the local deformation e;; is given
by[Bat67, Die76]

1)

where ¢;; is the local strain tensor, and w;; is the local
rotational tensor.

€ij = &jj +w,~,—.

Here we assume that v represents a displacement
field. For general vector fields, v may represent many
possible data, hence the terms deformation, strain,
and rigid body motion must be interpreted accord-
ingly. For example, if V represents fluid flow, then
these terms become deformation rate, strain rate, and
velocity, respectively.
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Figure 1: Components of local deformation.

The local strain is given by
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The terms along the diagonal of ¢;; are the normal
components of strain. Examining a plane oriented in
the z — y plane, normal strain causes uniform defor-
mation along the z — y axes as shown in Figure 1(a).
The terms off the diagonal are the shear components
of strain. Shear strain causes angular deformation as
illustrated by Figure 1(b).
The local rigid body rotation is given by
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The rotation tensor describes the local rigid body
rotation as shown in Figure 1(c). By adding the con-
tributions of the normal and shear strain and the ro-
tation, the total deformation can be also represented
as illustrated in Figure 1(d).

Note that the local rotation tensor can also be writ-
ten
(4)

Wij = —€ijkW
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where ¢;;) is the alternating tensor, and w is the ro-
tation vector

sy _ ow
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w= %i*- - %ﬂzﬁ (5)
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In fluid flow where V is the velocity field, w is the vor-
ticity and represents the rate of angular velocity of the
flow at a point. Another important flow parameter is
stream vorticity, 2, or rotation about the local vector
v given by the normalized dot product

| (6)
2.2 Computing Derivatives

In most applications the vector field V is known
only at m discrete points, and an interpolation func-
tion is required to compute the derivatives at the arbi-
trary point x in V. We assume that the geometry can
be represented as a union of many non-overlapping
elements, or cells, that are simple shapes such as hex-
ahedron or tetrahedron[Sch]. It is only at the ver-
tices, or nodes, of the cells that V is known. Although
many choices of interpolation function are possible,
the iso-parametric formulation common to finite el-
ement analysis[Zie77] provides many advantages in-
cluding simplicity of formulation, an abundance of
prior work, common use in the analysis process, and
the same formulation used regardless of element topol-
ogy.

The geometry of each element is described by

P
X = EN.' X5
i=1

where x; are the node points of the element, and N; are
the shape functions, one per element node. The shape
functions vary depending upon element topology; for
a hexahedron the shape functions are given in terms
of the element coordinates & = (§,7,¢)

M

No=i(1-&(-mi-¢)  ©®
with &,7;,¢; = %1 at the element nodes, and —1 <
£,7,¢ < linside the element. Note that at a particular
element node j we choose &;,%;,(; such that N; = 1
when i = j, N; = 0 otherwise.

In an isoparametric formulation, the interpolation
functions N; are the same for the element geometry as
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well as the nodal variable, in this case the vectors v;.
Hence the vector field in the element is given as

v =

(9)

P
N; v;
i=1

The local derivatives can be computed from Equa-
tions 7,8, and 9 as

ov/ox = J ' 0v/0¢ (10)
with J the Jacobian matrix
9z Sy 2z
8 d€ @
J= %:;‘. %* g_; (11)
9z 8y 82
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and
P
dz/0€ = D _(ON:/6&) xi (12)
i=1
P
8v/0E = S (ON:/0€) vi (13)
=1

2.3 Computing the Stream Line

Computing the streamline is straightforward. The
basic approach is to integrate the equation

x(t) = /‘ v(s) ds.

to

(14)

In fluid flow, v(t) is the velocity and t is time, and
the path generated can be considered the motion of a
massless particle in the velocity field.

Generally the integration is performed numeri-
cally using interpolation functions such as those de-
scribed in the previous section, and a numerical in-
tegration scheme such as the Euler or Runge-Kutta
methods[Cd72]. As the integration proceeds, it is nec-
essary to track the streamline as it moves through the
cells, requiring repeated transformation from global
to local coordinates. This transformation is per-
formed by solving Equation 7 explicitly for £(x)[LA90]
or using a numerical technique such as Newton’s
method[Cd72].

3 The Stream Polygon

Consider a regular n-sided polygon whose center is
located at position x and normal to the local vector
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n sides

(a) stream polygon sp (b) planar view

Figure 2: The stream polygon sp.

v in vector field V. This polygon is called the stream
polygon sp as shown in Figure 2(a). The radius of sp
is defined as the radius r of the circumscribing circle
of the polygon. The parameters r and the number of
sides n (Figure 2(b)) are constrained by

0<r< rmar (15)

0<n< nmar

where rmae and nmas are arbitrarily chosen finite val-
ues and N4z is an integer.

The stream polygon provides a number of simple,
yet powerful techniques for creating graphical repre-
sentations of 3D vector fields. The goal is to show the
usual translational effects, as well as the effects of local
strain and rotation. In addition, we wish to represent
scalar information.

The first technique is to deform sp according to the
components of local strain and rotation. Equations 2
and 3 can be combined to yield the standard trans-
formation matrix T containing effects due to scaling
(normal strain), shear, and rotation. Then sp is de-
formed by transformation T'.

It is also possible to project local strain onto the
plane defined by the point x and the local vector v.
For example, if the number of sides is n = 4 (i.e.,
the polygon is a square), the local deformation can be
represented exactly as shown in Figure 1. Here the
contributions of the strain and rotation are immedi-
ately apparent, as well as the combination of all three.
Another useful technique described by Equation 6 is
to project the vorticity w onto the local vector v. The
resulting angle € is the rotation of sp about v.

Another effective use of the stream polygon is to
vary the radius of the stream polygon according to
some prescribed relationship with vector magnitude
or other scalar function. For example, if V represents
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the velocity of an incompressible flow with no shear,
then the equation

lvminl

vl

represents an area of constant mass flow. Here rpas
is a user specified radius at the minimum flow velocity

(16)

(V) = Tmaz

Ymin-

Probably the most striking use of the stream poly-
gon is to sweep it along a streamline to produce the
streamiube. The streamtube is composed of n sides
corresponding to the n sides of the stream polygon.
Each side is a surface that can be colored accord-
ing to a specified scalar function. By combining the
effects noted previously, namely varying radius and
transforming sp, a large amount of information can
be represented in a simple, intuitive manner.

As a final note, if n = 0 or » = 0, sp is a point and
if swept in V results in a streamline. When n =1, sp
is a line and if swept in V results in a streamribbon.
Hence the stream polygon is a generalization of the
streamline and streamribbon.

4 Application

One application of the stream polygon is to place
multiple instances of the stream polygon along a
streamline, as shown in Figure 3. The stream poly-
gon may represent a single component of deformation
or possibly combinations of deformation mode. It is
also possible to locate the stream polygon along the
streamline, and generate the 2D strain projection as
described in the previous paragraph. By allowing the
user to position the stream polygon interactively, it is
possible to rapidly move along the streamline, viewing
the local strain at any point.

Our primary use of the stream polygon is to gener-
ate streamtubes using the techniques described in the
previous section. In our implementation of the swept
stream polygon in the LYMB/VISAGE[SLY*] visual-
ization system, we implemented the streamtube using
offset ribbons. These ribbons can be placed at a spec-
ified radius (possibly variable) from an arbitrary line
(generally a streamline). The width and location of
the ribbon around the line is controlled by specifying
a chord angle and start angle, and the ribbon rotates
with the normal to the line. Also, when creating a
streamtube, if the number of sides n = 0 a streamline
is generated, when n = 1 a ribbon is generated, and
when n = 2 two ribbons are generated, each perpen-
dicular to the other in a + cross section.



Figure 3: Deformed stream polygons along stream-
line.

A simple example of the streamtube is shown in
Figure 4. Here a closed loop has been constructed with
a regularly varying vorticity vector to generate the
twisted ring shown. The stream polygon is a hexagon,
and each of the six sides of the tube are colored with
the same regularly varying scalar function. The effects
of local strain are not shown.

A variant of the previous example is shown in Fig-
ure 5. Here a stream polygon with n = 49 generates
the streamtube shown. Every seventh side of the tube
is colored with a different scalar function to create the
stripes on the tube.

We have applied these technique to many practi-
cal data sets. For example, in Figure 6 the struc-
tured grid bluntfin!, is used to generate the stream-
line, streamribbon, and streamtube shown. Again the
stream polygon is a hexagon, but in this case alter-
nate faces of the streamtube are colored with the two
scalar functions flow temperature and flow pressure.
We have found that using more than three scalar func-
tions simultaneously is generally not effective, since
too much information is present, and much is hidden
from the viewer. Also notice in this example that the
radius of the tube varies with the magnitude of the
flow velocity. This is clearly seen as a bulge in the
tube as the flow impinges on the fin.

Figure 7 is an example of streamtubes in a section

1Widely available structured grid data from NASA Ames.
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of an annular combustor. The data was generated
using finite difference techniques. The geometry of
the combustor is shown as a wire mesh. A hexagonal
stream polygon is used to generate the tube shaded
with flow density, and with varying radius. It is inter-
esting to note how the shorter streamtube opens into
a trumpet shape as it approaches the surface of the
combustor where the flow velocity approaches zero.

As a final example, consider Figures 8 and 9. The
analysis is of the airflow a room containing some book-
cases and desks. The room contains a heat and pollu-
tion source (i.e., cigarette) near the closer of the two
desks, and has an air inlet duct (black square, lower
left) and exhaust duct (black square, upper left). On
the wall opposite the vents is a window. The purpose
of the analysis is to determine the effectiveness of the
ventilation system.

In Figure 8, a streamtube is started in the vicinity
of the inlet, travels through the room, is exits through
the exhaust vent. The tube is colored with room pres-
sure, and the radius varies according to Equation 16.
In Figure 9, another streamtube is started in a slightly
different location, but this time meanders throughout
the room. Eventually, the tube ends because the ve-
locity of the air is reduced below a specified terminal
velocity. In this figure the radius of the tube is not
varied.

5 Conclusions

The stream polygon is a powerful display technique
for visualizing 3D vector fields. It can be used to
display local deformation including normal and shear
strain and rigid body rotation. Streamtubes may also
be generated by sweeping the stream polygon along
the streamline. Rotating the stream polygon, varying
the radius, and shading the surface of the streamtube
with scalar functions provide other simple but power-
ful visualization techniques.
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