VISAGE: An Object-Oriented
Scientific Visualization System

W.I. Schroeder, W. E. Lorensen,
G. D. Montanaro and C. R. Volpe

GE Corporate Research & Development
Schenectady, NY 12301

Abstract

VISAGE is a scientific visualization system implemented in
an object-oriented, message passing environment. The system
includes over 500 classes ranging from visualization and graph-
ics to Xlib and Motif user interface. Objects are created using
compiled C and interact through an interpreted scripting lan-
guage. The result is a flexible yet efficient system that has found
wide application in our user community. This paper describes
the object architecture and the major issues we faced when
designing the visualization classes. Sample applications are also
described.

1.0 Introduction

Visualization systems have become powerful tools for the
scientist and engineer since they were first proposed in 1987 by
the SIGGRAPH Panel on Graphics, Image Processing and Work-
stations [1]. Since then several commercial and academic sys-
tems have been developed [2], [3], (4], [5], (6], [7]. [8]. [9].
Because scientific visualization is not mature, any successful
system must allow the introduction of new algorithms, and these
algorithms must be able to operate on a variety of data types. To
meet this extensibility requirement, current systems employ a
variety of architectures including network data flow, UNIX-like
pipelines, and procedural interfaces.

Object-oriented languages and methodologies have devel-
oped concurrently with the demand for sophisticated visualiza-
tion systems. Our early experience with an object-oriented
animation system [10] provided an implementation framework
and rich animation class library that form the basis of VISAGE,
the VISualization, Animation, and Graphics Environment.

Visualization systems can be broadly classified as either pro-
grammable or turnkey. Programmable systems provide a means
for the scientist to experiment with provided techniques or to
introduce new ones. Many systems [2], [3], [6], [7] use a net-
work dataflow architecture to implement sophisticated visualiza-
tion applications. Using this approach, users can customize
networks and readily introduce new algorithms.

Tumkey systems [4], (5], [8], [9] deliver a system for the
comfort of the end user. These systems are better suited for peo-
ple without programming knowledge, but require users to import
data in supported formats. A turnkey system also presents a sta-
ble user interface.

0-8186-2897-9/92 $03.00 © 1992 IEEE

219

VISAGE takes a different approach. In our environment we
need a system that can package turnkey applications as well as
serve as a research platform to discover new visualization tech-
niques. Our object-oriented solution meets both objectives by
providing:
® An object-oriented architecture that uses subclassing to
enforce complicated protocols and promote reusability.
® User interface classes that permit custom interfaces for a
variety of applications. The same object-oriented structure
is present in the user interface and X11 class libraries. These
interface classes are isolated from the visualization classes.

® An underlying scripting language that permits extension of
packaged functionality.

¢ A uniform object paradigm that requires every component
of the system to be an object with instance variables to
maintain state and methods to operate on that state. All
instance variables and methods can be accessed through the
scripting language.

This paper describes the architecture of the VISAGE visual-
ization classes and application. Although we successfully
implemented the system in an object-oriented environment
called LYMB, the class design is applicable to other implemen-
tations. We start by describing the goals that continue to drive
the design of the visualization classes. Next we describe the
architecture of the system and the visualization classes. A brief
description of implementation issues is followed by examples.

2.0 Design goals

The VISAGE system was developed based on a number of
design goals. The major goals are described as follows.

2.1 Object-oriented

A primary design goal was to implement VISAGE using the
object-oriented paradigm [11]. The benefits of this approach are
widely documented, but to us it means flexible, compact, and
modular code that is easy to maintain, extend, and reuse. We
also find that object-oriented systems are easy to learn and use.

2.2 Data forms

In VISAGE, visualization data consists of a geometric repre-
sentation plus additional scalar and vector data. Initially four

L] L 3K] .
° o d
.
. PR)
Structured points Unstructured points
Structured grid Unstructured grid

Figure 1: Visualization data structures.

geometric data types were selected: structured and unstructured
point sets, and structured and unstructured grids (Figure 1).

A structured point set, also known as volume or uniform data,
consists of a set of regularly spaced, orthogonal points [12]). The
geometric representation consists of an x-y-z resolution, possibly
supplemented with ax-ay-az aspect ratios. The point coordinates
and relationships are implicit in the data.

The point coordinates in unstructured point sets are randomly
located in space. The relationship of points one to another is
totally unspecified.

The structured grid set is a topologically regular set of points
whose coordinates may be non-uniform. The topological form is
of a regularly subdivided cube. The relationship of one point to
another is implicit in the data.

The unstructured grid set is a set of points, or nodes, and
topological organizations of nodes, or elements. For example, a
set of eight nodes can be used to form a hexahedral (or brick)
element. The points are generally randomly positioned with
respect to one another, and the topological relationship of one
point to another is maintained in the element specification.

2.3 Data representation

Implementing efficient algorithms requires that data is stored
and accessed in native form. By native form we mean that the
various data types are not converted into some canonical form.
Rather data structures and methods are constructed based on the
particular characteristics of the data. For example, it is possible
to represent the four geometric types described previously using
a general unstructured grid data structure [12]. However, penal-
ties in storage and access requirements often result. Consider
representing a structured point set with a unstructured grid repre-
sentation. Instead of using a simple combination of dimension
and aspect ratio, the structured point set would require at a mini-
mum nodal coordinates and element connectivities. In addition,
performing a simple search to determine the closest point to a
specified point is straightforward in a structured point set. In an
unstructured grid set the process is much more compute inten-
sive. In VISAGE, all data is stored and accessed in a form native
to the type of data.

24 Animation

VISAGE was designed from the ground up to support general
purpose animation. In VISAGE, animations are not sequences of
static images, or isolated objects that periodically introduce new
data into the system. Rather animations are defined programmat-
ically and every object in the system including the user interface,
algorithm, and data objects can all participate. In addition, all
data objects in the system have the notion of time, and the ability
to interact with other objects to read, write, and cache their data
as necessary.

220

Figure 2: LYMB architecture.

25 Distributed visualization

Another important design goal was the ability to create dis-
tributed applications. This is important in order to take advan-
tage of distributed compute and data servers. In addition, coarse
grained parallel processing can be achieved in many applica-
tions.
2.6 Portability

VISAGE is portable, running on most UNIX graphics work-
stations including HP Series 300 and 700 computers, DECSta-
tion 5000, Silicon Graphics VGX, GTX, Personal Iris and
Indigo, the IBM 6000 series, and Sun 3 and 4. We designed the
system to use native graphics software and hardware on each
system (e.g., Starbase on the HP systems, GL on the Silicon
Graphics), rather than relying on any single standard. We find
this 1o be beneficial because some implementations of standard
graphics libraries are not optimal on all systems.

2.7 Other goals

Of course there are a number of other design goals important
to the success of any system. These include simple data abstrac-
tion for ease of use, efficient algorithms and data structures for
rapid response, and well designed data interactors to improve
system interactivity. In addition, we stress flexibility most of all.
In VISAGE, the entire application, including the user interface,
animation sequences, and data access is configurable at run-time.
The system is not built by writing compiled code to interface
with object libraries. Instead we use an interpretive environment
to rapidly configure the system.

3.0 Architecture

The VISAGE architecture consists of two major parts: the
LYMB implementation environment and the visualization archi-
tecture. LYMB provides the fundamental mechanisms for object
implementation and interaction. The visualization architecture
includes specification of data and algorithm objects. This paper
emphasizes the architecture of the visualization classes.

31 LYMB

LYMB [10], [13] is an object-oriented environment written in
the C programming language. The usual object-oriented charac-
teristics of object instantiation, data encapsulation, and inherit-
ance are obtained by adopting a standard development
methodology. LYMB implements object interaction by using
run-time message passing, either directly within C-code or
through an interpreter. LYMB currently contains over 500
classes including visualization, graphics, numerical computa-
tion, programming tools, the X and Xt libraries, and the Motif
widget set.

The message passing mechanism is illustrated in Figure 2.
LYMB messages are of the single form

object ml m2..., mn;

where object is the name of an instance or class, and ml, m2,
mn are messages to object. The trailing semicolon indicates the
end of messages sent to object. Each message consists of a string
plus additional parameters, if necessary. The following is a typi-
cal LYMB statement:

scalar new:x =45 sin!;

Here the object scalar is sent the new:x message to create an
instance of the scalar class. The value of x is set to 45 and then
the sine of the value is computed using the sin/ message.

Messages may either originate from objects embedded in C
code, or at run-time from the keyboard or files containing
sequences of LYMB messages (i.e., scripts). The result is that
applications written in LYMB use a hybrid compiled/interpreted
environment. This environment is both flexible and powerful,
since compute intensive tasks are written in C as object classes,
but object interaction (which implements the application) is
specified at run-time. In fact it is possible to write complete
applications without writing any C code, provided all necessary
classes are available. This interpreted environment is particularly
important when creating graphical user interfaces with X11 tool-
kits using Motif, since the fine-tuning of resources and callback
behavior can be changed without the lengthy compile-load pro-
cess.

LYMB is a complete programming language. Conditional
execution, looping, procedures, and recursion can all be imple-
mented using LYMB scripts. It is also possible to use object indi-
rection and recursive parsing to exchange data between objects.

In LYMB, message passing is not confined to a single process
or on a single computer. Interprocess and intercomputer message
passing is supported and provides a powerful tool to build dis-
tributed systems. Distributed message passing is implemented
using the XDR protocol [14], so machines of different architec-
tures can exchange data.

3.2 Visualization architecture

The underlying visualization architecture in VISAGE is
based on data flow. As a result there are two general object types:
data objects and process objects. Data objects represent and pro-
vide access to data of various forms, while process objects pro-
duce, transform, or consume data objects. Taken together, data
objects and process objects form a data flow network architec-
ture similar to AVS {2] or apE [3].

The VISAGE data flow architecture is shown in Figure 3.
Data is generally introduced into the system using reader
objects. These objects create data set objects that are processed
by data set filter and computed feature objects. The computed
features generate data objects called display data, which is a
simple visualization form. Finally, display modellers map the
display data through a lookup table and create another type of
data object, rendering primitives for the particular computer ren-
dering library. The architecture is thus a three stage network of
data objects: data sets, display data, and rendering primitives,
separated by process objects that generate, transform, and con-
sume data.

The data set, which consists of a geometry, scalar, and vector
data, represents data in efficient, native structures. It also sup-
ports a variety of data types for interfacing to different data
forms. The computed feature transforms the large, complex data
forms of the data set into the simpler, more efficient, and more
general display data form. Display data serves as a common
denominator between the more complex data set and the hard-
ware specific rendering primitives. The generality of display data
also allows many different process objects to operate on it.

221

Reader ﬁ
Data set
Computed feature Wn;r]
Display data
Rendering primitive

Figure 3: Visualization architecture.

Whenever practical, algorithms are implemented at the display
data level since the added capability is available to process a
greater variety of data sources. Finally, display modellers inter-
face with the rendering library to generate graphical images.
These objects implement mechanisms for run-time instantiation
of rendering primitive objects, resulting in the portability and
rendering efficiency that the system enjoys.

Simplicity is another important characteristic of this architec-
ture. There are only three classes of data objects, providing a
data abstraction that is easy to understand and use. It is also flex-
ible, supporting and interfacing to a wide variety of data.

A more detailed description of these objects follows. For
each object class, we give a description plus an object model dia-
gram [11). These diagrams represent object inheritance (shown
as triangle cormection) and object association (shown as straight
line connection). Important instance variables are also shown.

3.2.1 Data Set

The data set (Figure 4) is a composite object, consisting of
three primitive data classes: scalar, vector, and geometry. Geom-
etry is an abstract superclass of the four geometric representa-
tions structured and unstructured points, and structured and
unstructured grids. Although only a single geometry, scalar, and
vector may be processed at one time, the data set retains lists of
the many possible scalars and vectors that may be associated
with the geometry. The primitive data classes geometry, scalar,
and vector inherit from visage data. Visage data is an abstract
class that implements methods to manipulate and access time
dependent data, and to interface with the reader objects. Hence
all subclasses of visage data are transient.

The generic data object can represent arbitrary multi-dimen-
sional arrays. Methods are available for extracting and manipu-
lating the data in various ways. A typical access method extracts
portions of the data as scalars or vectors to be associated with the
data set.

32.2 Display Data

The display data object (Figure 4) represents points, lines,
polygons, and triangle strips in any combination. Additional
attribute information can be associated with the points including

Figure 4: Data object diagrams.

scalars, vectors, normals, and texture coordinates. This infor-
mation is used by the display filters to transform display data,
and by the display modellers to process display data into render-
ing primitives, Display data inherits transient behavior from vis-
age data,

3.23 Rendering Primitive

VISAGE has many rendering class libraries. Each library
consists of four basic parts. The renderer performs high-level ini-
tialization and synchronizes the rendering process. The light and
camera objects implement the particular light and camera func-
tionality of the rendering library. The fourth part, the rendering
primitives, implement the interface of geometry (points, lines,
polygons, and triangle meshes) and attributes (normals, colors,
texture coordinates) to the rendering library. The renderer main-
tains lists of its lights, cameras, and actors. Actor is an object that
maintains transformation and properties, and interfaces to the
rendering primitives through its display modeller.

The rendering process is initiated by sending a render! mes-
sage to the renderer. This message can be sent directly by the
user, or indirectly, as a result of interacting with the user inter-
face objects. The renderer then causes the lights, camera, and
actors update themselves, as necessary. To implement device
independence, the renderer sends its class name to its lights,
cameras, and actors. The class name can then be used to dynami-
cally instantiate internal light, camera, and rendering primitive
objects corresponding to the class of the renderer (and hence the
type of rendering library). As a result VISAGE applications are
independent of any particular rendering library.

The object diagram for the rendering classes is shown in Fig-
ure 5. Note that renderer is an abstract class that implements the
rendering protocol. Specific renderer classes inherit from ren-
derer and implement the particular methods necessary to prop-
erly initialize and control the rendering library.

324 Reader

Reader objects (Figure 6) are process objects that read data
from a file, converting them into data sets or display data. Cur-
rently three types of reader objects have been implemented in the
VISAGE class library: PLOT3D [15], AVS, and netCDF [16].

325 Writer

Writer objects (Figure 6) are process objects that write data
based on the form of their input data object. Only the netCDF
writer object is available.
3.2.6 Data Set Filter

Data set filters (Figure 6) take as input a data set, generating a
data set as output. Typical examples include the gradient and tri-

222

visage_reader reader | visage data
file
data set visage geometry 4 —
visage_scalar display data visage geometry
visage_scalar
visage_vector I_A_|
visage_vector unstructured points structured points
neric data
unstructured grid structured grid

angulation filters. The gradient object processes a data set con-
sisting of a geometry and scalar to produce a data set consisting
of the same geometry with the gradient vector field. The triangu-
lation object takes in a data set and creates a data set consisting
of an unstructured grid geometry. The triangulation is imple-
mented using the Delaunay triangulation {17].
32.7 Computed Feature
Computed features (Figure 6) generate display data from an
input data set. Example classes include
® isoswrface implements the Marching Cubes algorithm [18],
® streamer generates streamlines with vorticity. In conjunction
with the tube filter, streamer implements the stream polygon
[19] to generate streamribbons and streamtubes,
¢ probe samples the data set at points provided from an arbi-
trary geometry,
cutter slices though the data set to generate cut planes, and
geometry extracts specified parts from the geometry of the
data set.

3.2.8 Display Filter

Display filters (Figure 6) take display data as input and gener-
ate display data as output. Because of the generality of display
data, a large number of algorithms are implemented as display
filter objects. Two examples of display filter objects are the deci-
mation filter [20], and the contour filter. The decimation filter
reduces the number of polygons in a mesh while preserving the
original topology and approximating the original geometry. Con-
tour filter generates contour lines from an input polygonal mesh
and associated scalar data.

Some display filters take as input more than one display data
(this is true for other process objects as well, e.g., streamer). For
example, data primitive takes two display data objects as input.
For each point in the first input display data, the second display
data is copied to it, aligned according to the input vector or nor-
mal, and scaled and colored according to the input scalar data or
vector magnitude. An gpplication of the data primitive is to
ingest streamlines created from the streamer object, and then
copy along it spheres defined from the sphere modeller. The
spheres represent fuel droplet size within an annular combustor
as the droplets travel from the nozzle into the combustor (Figure
8).

3.29 Display Modeller
Display modellers (Figure 6) create rendering primitives

from display data. There are two parts to this process. First, the
display data must be transformed into a structure compatible

light renderer " olor modeller| ®4t | display data
camenl A\ —4 .
cone| {sphere byu modl
J
starbase || gl igs
display data | in | display modeller | out rendering primitive
I I A T 1
display lines | | display points | | display polygons | | display all

Figure 5: Renderer object diagrams

with the rendering library. Second, the scalar information in the
display data object is mapped through a lookup table to generate
color shading. If no scalar information is present, or if scalar
mapping is turned off, the actor’s property is used to color the
object. Some rendering libraries are also capable of texture map-
ping. Texture coordinates are available from display data, and
the texture file from the actor’s property. These two pieces of
information are then used to generate texture on the final image.

3.2.10 Modeller

Modeller objects (Figure 5) are filters that are sources of dis-
play data. The cone modeller, for example, creates polygonal
cone representations based on its resolution instance variable. In
VISAGE, modellers also provide convenience methods to inter-
act with the rendering process. These convenience methods
allow modellers to be specified as the display modeller to the
actor class. Then internally a display modeller is instantiated and
interfaced to the display data created by the modeller.

4.0 Implementation

Implementing an object-oriented visualization system poses
many problems. An overview of some of the more interesting
ones, and the approach we used to solve them is given in the fol-
lowing sections.

4.1 Network construction and execution

In VISAGE visualization networks are constructed by con-
necting filter and data objects together. Normally data objects are
never explicitly created by the developer, instead they are cre-
ated as a by product of the execution of a filter (Figure 7). These
data objects then become objects private to the filter, and store
the result of the processing activity. The advantage of this is that
if a change to a filter object in the middle of a network occurs,
only those objects downstream of the change need re-execute.
The disadvantage of this is that large amounts of memory are
consumed for storing the intermediate data representation.

VISAGE networks can be constructed so that filter objects
use the same output data object as input data object. Hence the
output data overwrites the input data. This reduces memory
requirement at the expense of processing time.

Networks, once constructed, use an implicit scheme to con-
trol execution. Every object in the system, including the visual-
ization objects, keeps track of modification time. Hence
whenever the instance variables of an object are changed, its
modified time is updated. When a request for data is made to an
object in the network, the object queries its upstream neighbor
for modified time, who then queries its upstream neighbors’

223

modified time, and so on. If the modified time of the upstream
object is greater than the object itself, then the object must regen-
erate its output data. In VISAGE, the process occurs as a back-
ward propagating query for modified time, followed by a
forward propagation of network execution, as required. This
implicit scheme is different from many other systems that use an
explicit network executive to control the execution of network
process objects [2].

An example LYMB script illustrates the visualization classes.
The example constructs one of the streamline / fuel droplet rep-
resentations of Figure 8.

/* Create a renderer */
cdf_reader new: areader
filename= ‘casel.cdf’;
/* Create a streamline */
streamer new: astreamline
data_in= areader
start_position= (1,2,3);
/* Create drops along streamline */
data_primitive new: pearls
data_in= astreamline
source= asphere
range= [areader range?);
/* The sphere is used by data primitive to represent drops */
sphere_modeller new: asphere
resolution=3;
/* Map display data to graphics library */
display_modeller new: draw_spheres
data_in= pearls
range= [areader range?};
/* Actor interfaces to renderer and modellers */
actor new: anactor
modeller= draw_spheres;
/* Device independent renderer created */
renderer new: aren
actors= [actor instances?]
render!;

Many short cuts have been taken advantage of in this exam-
ple. Every object when created has initial values for its instance
variables. Most of these are left unaltered. For example, the dis-
play modeller internally references a lookup table object. The
default lookup table object is used. Also the renderer automati-
cally creates lights and cameras since neither is specified.

visage_reader | out data set data set in | visage writer
file file
A display data display data
I
cdf | |plot3d] | avs cdf | | plot3d avs
ss_object 1
data set | in | data_set filter | out | data set
rriangulate radient
1
data set | in | computed feature | out | display data display data |in | dispiay filter | out | dispiay data
i 1 1] | — r_—¢_—l
isosurface | | streamer culplanel&obe g Y decimate | | contour | | data primitive
—i—

Figure 6: Process object diagram.

4.2 Data management

Data management is another concern in visualization. In typi-
cal object-oriented systems, data passed between objects is usu-
ally of a simple form: floats, integers, strings, etc. Pointers are
typically not passed between objects, since knowledge of the
structure of the data must be distributed outside the objects, vio-
lating the data encapsulation commandment of the object-ori-
ented paradigm. In the design of the VISAGE classes, we limit
pointer passing. However, to minimize data copying and
improve performance, pointers must sometimes be passed so that
data can be shared.

Passing pointer data between objects raises an important
issue: which object owns the data? When an object allocates and
then passes memory to another object, neither object knows
when it is safe to release the memory. Failure to resolve this
issue properly results in systems that exhibit excessive memory
usage, or are brittle.

One possible solution is to use a LISP-like garbage collection
approach. LISP systems depend upon the ability to tag unrefer-
enced memory. Since memory is not tagged on most UNIX sys-
tems, implementing garbage collection in a UNIX and C
environment is difficult. Garbage collectors can also be rather
slow and unpredictable, reclaiming memory at inopportune
times.

To address this memory management issue we implemented a
reference count object, called memmgr, to keep track of the
dynamic memory allocated in LYMB. Memmgr routines are
called instead of the usual C memory allocation routines, malloc,
realloc, calloc, and free. All memmgr routines take the same
arguments as their regular counterparts, but they also take an
extra string argument that associates a particular object or func-
tion in the system with the pointer being tracked.

Memmgr keeps track of each reference to allocated memory.
‘When memory is initially allocated, its reference count is set to
1. Then every other object that accesses this memory registers its
use with the memmgr register function. Registering use of mem-
ory increments its reference count by 1. However, when an
object no longer needs to access reference memory, it calls the

224

memmgr free method. Freeing memory in this way reduces the
reference count by 1. The memory can be safely freed when the
reference count to an area of memory is reduced to zero.

This approach minimizes system memory utilization. Often
data that passes through the visualization network is shared bya
number of objects. For example, a list of points passed from an
unstructured point set to a display data to a rendering primitive is
allocated only once.

43 Distributed visualization

Given the size of data that are created today, and the com-
plexity of some of the visualization techniques, it is important to
utilize computational resources as efficiently as possible. One
technique to achieve this goal is to implement distributed visual-
ization.

In VISAGE, distributed visualization is implemented using
LYMB message passing (Figure 2). The key to this process is the
object msg. Msg receives messages from objects, or through the
parser (i.e., user key-in or scripts). Typical message passing
involves placing arguments on an internal stack, and then exe-
cuting the method corresponding to the message sent to the
object. These arguments are usually simple types such as integer,
float, or scalar, but sometimes they are more complex types such
as pointers to display data or float arrays. Passing complex argu-
ments poses no problem when the objects exist within the same
process. However, when these objects exist in separate processes
or on different computers, passing pointers will not work. Hence
the msg object uses a different mechanism when sending mes-
sages to remote objects.

The proxy object is used in conjunction with msg to perform
distributed message passing. When a message is sent to a remote
object O, msg first tries to find it within its local object table. If it
cannot find O, msg then tries to find it in a remote LYMB pro-
cess. The possible remote processes are specified at run-time as a
list to msg. For each process in the list, msg connects to that pro-
cess and determines whether object O exists. If it does exist, then
msg creates a local proxy object to represent the remote object
O, and enters the proxy object into its local symbol table. From

Intermediate
data is stored;
reduced compu-
tation

Intermediate data
is overwritten;
reduced memory
[requirement

Figure 7: VISAGE visualization network.

this point on, the proxy object handles message traffic between
itself and the remote object O. The proxy object is also responsi-
ble for marshalling data with XDR routines to 0. Hence complex
data types are transparently transmitted from one object to the
next across processes or computers.

5.0 Applications

We refer to VISAGE as both a visualization class library as
well as an application (Figure 9) that we distribute to our end
users. Besides using the visualization classes, the VISAGE
application uses many other objects implemented in the LYMB
development environment. Some of these classes include Motif
widgets, Xlib and Xt classes, programming tools such as collec-
tion, logic, and loop, and the OSCAR [10] animation class
library. A portion of the VISAGE application showing the use of
many of these classes to implement 1-D probes is shown in Fig-
ure 10.

Because the VISAGE application is written using LYMB, it
is run-time extensible. Users frequently extend VISAGE into
new areas such as fusing image data from MRI and PET (Figure
11) or visualizing blood flow in the human brain (Figure 12).
The example shown in Figure 12 is especially interesting
because animation cues, scenes, a random particle generator, and
a numerical integration process to move the particles were added
without the need to recompile or modify VISAGE.

Other users prefer to write custom applications using the
VISAGE visualization classes. Figure 13 is an example of an
environmental data set. Here the data consisted of water table
heights plus monitoring and pumping well locations. This was
combined with local topographical information to show the
placement of an industrial facility in relationship to a nearby
river and the water table. Other applications that have been
developed include golf visualization [21], VIVA, an application
for exploring slice-oriented volume data, and THAADS, a 3D
command and control simulation system. Dozens of other small
applications have been written by piecing together and extending
existing LYMB scripts. Our users find that is possible to rapidly
develop custom visualization applications in this way.

225

References

(1
(2

(31

(41

[5)

[61

18]

9

(10]

i1

(12

(3]

(14

(15]
[16]

7

(18]

9]

120]

[21]

B. H. McComick, T. A. DeFanti, and M. D. Brown. Visualization
in Scientific Computing. Computer Graphics, 21(6), Nov. 1987.
C. Upson, T. Faulhaber Jr.,, D. Kamins and others. The Applica-
tion Visualization System: A Computational Environment for Sci-
entific Visualization. [EEE Comp Graphics and Applicati
9(4):30-42, July, 1989.

D. S. Dyer. A Dataflow Toolkit For Visualization. I[EEE Computer
Graphics and Applications 10(4):60-69, July, 1990.

S. M. Legensky. Advanced Visualization on Desktop Worksta-
tions, Proceedings of the Visualization ‘91 Conference, pages
372-378, 1991.

G. V. Bancroft, F. J. Merritt, T. C. Plessell, P.G. Kelaita, R. K.
McCabe, and A. Globus. FAST: A multi-processed environment
for Visualization, Pr dings of the Visualization "90 Confer-
ence, pages 14-27, 1990.

Data Explorer Reference Manual, IBM Corp, Amonk, NY,,
1991.

IRIS Explorer User’s Guide, Silicon Graphics Inc., Mountain
View, CA, 1991.

Data Visualizer User Manual, Wavefront Technologies, Santa
Barbara, CA, 1990.

R. Haimes and M. Giles. VISUAL3: Interactive Unsicady
Unstructured 3D Visualization. ATAA Report No. AIAA-91-
0794. January, 1991.

W. Lorensen and B. Yamrom. Object-oriented Computer Anima-
tion. Proceedings of NAECON, Dayton, OH. pages 588-595, May,
1989.

J. Rumbaugh, M. Blsha, W. Premerlani, F. Eddy, and W.
Lorensen. Object-Oriented Modeling and Design. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

L. Gelberg, D. Kamins, D. Parker, and J. Stacks. Visualization
Techniques for Structured and Unstructured Scientific Data. SIG-
GRAPH *90 Course Notes for State of the Art Data Visualization.
August, 1990.

W. J. Schroeder, W. E. I , G. D. Montanaro and B. Yam-
rom. A Run-Time Environment for Rapid Application
Development. GE Corporate R&D Report No. 91CRD266. Janu-
ary, 1991,

XDR: Extemal Data Representation Standard. RFP No. 1014 Sun
Microsystems SRI Int’l. Information Science Institute Menlo Park
CA. June 1987.

P. P. Walatka and P. G. Buning. PLOT3D User's Manual. NASA
Fluid Dynamics Division. 1988.

R. Rew and G. Davis. NetCDF: An Interface for Scientific Data
Access. IEEE Computer Graphics & Applications. July, 1990
pages 76-82.

W. 1. Schroeder. Geometric Triangulations: With Application to
Fully Automatic 3D Mesh Generation. PhD Dissertation, Rensse-
iaer Polytechnic Institute, May, 1991.

W. E. Lorensen and H. Cline. Marching Cubes: A High Resolu-
tion 3D Surfsce Construction Algorithm. Computer Graphics,
21(4):163-169, July, 1987.

W. Schroeder, C. Volpe, W. Lorensen. The Stream Polygon: A
technique for 3D vector field visualization. Proceedings of the
Visualization ‘91 Conference, pages 126-132, 1991.

W. Schroeder, J. Zarge, and W. Lorensen. Decimation of Triangle
Meshes. Computer Graphics, Volume 25, No. 3, (Proc. SIG-
GRAPH *92), July, 1992.

W. Lorensen and B. Yamrom. Golf Green Visualization. Proceed-
ings of the Visualization ‘91 Conference, pages 116-123, 1991.

Figure 8: Fuel droplet size and path in annular Figure 9: VISAGE application showing main control
combustor. panel and rendering window.

Figure 10: VISAGE 1D probe; plotting scalar values Figure 11: Fusion of MRI (256 x 256 x 45,16-bit) and
along arbitrary line. PET (128 x 128 x 15, 8-bit) data from the human braln.

Figure 12: Visudlization blood flow in the basilar Figure 13: Water table visudlization showing
artery. Data measured using phase contrast MR Enoniforlng waells (yellow) and pumping wells
orange).

(See color plates, p. CP-25.)
226

